1		
MINOR		
GENERAL CHEMISTRY 1		
4		
THEORY: 3; PRACTICAL: 1		
THEORY: 3; PRACTICAL: 1		
Group A		
Module 1: Fundamentals of Organic Chemistry and		
Stereochemistry		
and		
and t of		
nons		
tions		
(4 Lectures)		
ct of		
Eliminations: E1 and E2 reactions (elementary mechanistic		
aspects); Saytzeff and Hofmann eliminations; elimination vs		
substitution.		
Stereochemistry (4 Lectures)		
Stereoisomerism, concept of chirality and optical activity, meso		
compounds. Projection methods: Fischer, Sawhorse, Newman		
projections and their interconversion; Configurational		
nomenclature: D/L, R/S and E/Z.		
Group B		
Modele 2: Chemical Thermodynamics (12 L)		
1. Definition of systems, surroundings and types of systems		
(isolated, closed and open).		
2. Extensive properties and intensive properties.		
3. Concept of Thermodynamic equilibrium, concept of		
4. Concept of heat and work, reversible work, irreversible		
5. First law of Thermodynamics, internal energy as a state		
function, properties of state function and path function.		
6. Definition of isothermal and adiabatic processes.		
8. Joule-Thomson experiment and enthalpy as a state		
function.		
9. Calculation of work done, heat changes for isothermal and		

10. Concept of Entropy as a state function, Entropy changes in various Physical processes.		
 Concept of Entropy as a state function, Entropy changes in various Physical processes. Module 3: Chemical Kinetics Rate of a reaction, rate law Temperature fluctuation and reactivity in gaseous phase Crude approximation: all binary collision leads to product. Calculation of binary collision frequency and collision number in gaseous state. Refinement: concept of activation energy and Boltzmann distribution to introduce the effect of activation energy in the rate law Rate constant and its variation with temperature: Arrhenius equation Order of a reaction Integrated rate laws and characteristic plots Half-life and its significance Determination of order of a reaction Rate expression for complex reactions Unimolecular reaction and reaction mechanism Multi-step reactions Rate determining step Steady state approximation Further refinement: steric requirements (Basic qualitative overview) 		
 Practical: Analytical Chemistry Practical. 1. Standardization of NaOH using oxalic acid. 2. Standardization of HCl/acetic acid using standardized NaOH. 3. Estimation of carbonate and hydroxide present together in mixture. 4. Estimation of carbonate and bicarbonate present together in a mixture. 5. Estimation of <i>NH</i>⁴ + by formol titration. 		

Learning Outcomes	Theory:		
	To have basic knowledge about the		
	1. Fundamental aspects of organic chemistry and chemistry		
	of reactive intermediates		
	2. Stereochemistry of Organic molecules		
	3. Aliphatic substitution reactions and elimination reactions		
	4. Fundamental aspects of chemical thermodynamics.		
	Practical:		
	To have basic knowledge about analytical chemistry experiment		
	related to acid-base titrations		
Reading/Reference Lists	 Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley (India) Pvt. Ltd. (Pearson Education) Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education, 2003. 		
	3. Nasipuri, D. Stereochemistry of Organic Compounds, Wiley		
	Eastern Limited.		
	 Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education). Robinson, M. J. T., Stereochemistry, Oxford Chemistry Primer, Oxford University Press, 2005. Atkins, P. W. & Paula, J. de Atkins' Physical Chemistry, Oxford 		
	University Press		
	7. Castellan, G. W. Physical Chemistry, Narosa		
	8. McQuarrie, D. A. & Simons, J. D. Physical Chemistry: A		
	Molecular Approach, Viva Press 9. Levine, I. N. Physical Chemistry, Tata McGraw-Hill. 10. Mortimer, R. G. Physical Chemistry, Elsevier. 11. Ball, D. W. Physical Chemistry, Thomson Press.		
Evaluation	Theory: 60	Practical: 40	
	Internal: 15 (CIA: 10; Other	CA: 38, Attendance: 2	
	form of Assessment: 2;		
	Attendance: 3)		
	Semester Exam: 45 (Gr. A:		
	15; Gr. B: 30)		
Paper Structure for	Gr. A: Attempt ONE out of TWO questions of 15 marks each.		
Theory Semester Exam	Gr. B: Attempt TWO out of THREE questions of 15 marks each.		