Semester	2	
Course ^{*1}	Minor	
Paper Code	B1MT230211T	
Paper Title	Complex Numbers & Applications of Calculus and ordinary differential equations [Chemistry+ Microbio+Biotech]	
No. of Credits * ²	4	
Theory / Practical / Composite	Theory	
Minimum No. of preparatory hours per week a student has to devote	4	
Number of Modules	2	
Syllabus	Module-1[Complex Numbers and Applications of Calculus]1. Complex numbers [13](Basic Operations: Multiplication, Division; Modulus and Argument; Complex Conjugate and its properties), Triangle Inequality [3], De-Moivre's theorem and its applications [3], Functions of a complex variable: Exponential, sine, cosine, logarithms and complex powers, Hyperbolic Functions and related problems,[7]2. Application of Calculus [12]Tangent and Normal [3], Curvature (3). Asymptotes (Cartesian equation only)[3], concavity and inflection points [3].	
	Module-2 [Ordinary Differential Equations]	
	3. Ordinary Differential equations [27]: Formation of	
	ode -exemplification from various fields (2) First	
	order ode: Exact differential equations, Non-exact	
	differential equations & Integrating factors (no proof)	
	(4) Linear ode and Bernoulli's equation(2). First order	
	higher degree ordinary differential equations;	

	Clairaut's equation: general solutions (3).General solution of linear homogeneous differential equations of second order [2], Wronskian and related problems [2].Linear non-homogeneous equations with constant co-efficients; Cauchy Euler equation[5]; Second order linear differential equations with variable co- efficients; method of variation of parameters [7]
Learning Outcomes * ³	 On successful completion of the course a student will be able to do the following: Learn to simulate real life problems through mathematical models involving differential equations to predict possible outcome and to suggest remedial measures: have many useful applications in environmental and social sciences including that of climate change and in predicting behaviour of infectious diseases.
	 Study an algebraic equation geometrically through curve tracing to throw light on the nature of given algebraic equation; in Particular, studying the topic helps in (a) finding the rate of increment/decrement of a function (b) verifying whether the curve is limited to a finite region of a plane and whether the function value can be closely approximated ultimately by that of a line (c)verifying whether the curve opens up or closes down (d) verifying how closely given curve resembles a straight line locally. and learn how to apply these concepts in studying financial systems. Learn complex numbers as natural and useful extension of real number system in which a polynomial equation can always be solved.
Reading/Reference Lists * ⁴	 Introduction to Real Analysis—Bartle, Sherbert Classical Analysis—S.K.Mapa Higher Algebra (Linear and Abstract)—S.K.Mapa Differential Equation—Maity,Ghosh Application of Calculus—Maity,Ghosh Online Lectures:

	 <u>https://youtu.be/JOfnCCNj4gQ</u> <u>https://youtu.be/_LX1p0VFkp4</u> https://youtu.be/0FLrxud3fgU https://ocw.mit.edu/courses/18-03-differential-equations-spring-2010/ 	
Evaluation	Theory CIA: 20+5+5=30 Semester Exam: 70	Practical (if applicable) CA: Semester Exam:
Paper Structure for Theory Semester Exam	7 questions each carrying 10 marks out of 12/13 questions.	