Semester	2	
Course *1	Minor	
Paper code	B1MT230221T	
Paper Title	Linear Programming and Calculus-1 [Economics+ Computer Science]	
No. of Credits * ²	4	
Theory / Practical / Composite	Theory	
Minimum No. of preparatory hours per week a student has to devote	4	
Number of Modules	2	
Syllabus	Module-1[Linear Programming] 1. Linear Programming [37] : Formulation of Linear Programming Problems: standard and canonical forms. (3). Graphical Solution of L.P.P and moving hyperplane method: Examples of Finite Optimal Solution; Alternative Optimal Solution; Unbounded Solution. (3). Basic Solution of a system of linear equations: examples. Feasible solution. Degenerate solution. Reduction of a feasible solution to a basic feasible solution. (4). Convex sets and their properties (statement only) Examples; [2]. Extreme points and Boundary points of a convex set and examples [1]	
	Simplex Method: Its Algebraic and Geometric Aspect (2). Criteria for improvement and optimality of objective function; Criterion for unbounded solution. Computational Aspect of Simplex method: Simplex table. Examples (5) Obtaining initial b.f.s. Artificial variable. Charne's Big M Method (4)	
	Duality Theory: Canonical and Standard form of primal and dual l.p.p., Dual of the dual LPP is the primal LPP[2]. Weak duality Theorem, Fundamental Theorem on Duality (no proof) and their applications. [2]	
	Game theory: Two Person zero sum game. The Saddle point and the maximin-minimax principle. Relation between maximin and minimax values (2). Games without saddle	

	point: Mixed strategy(2). Graphical Method of solving nx2 and 2xn games (2). Dominance property: generalised dominance (1). Reduction of a game problem to a LPP: Fundamental Theorem of Rectangular Games (statement only) (2).		
	Module -2 [Calculus-1]		
	Mean Value Theorems [15]: Statement of Rolle's Theorem - its geometrical interpretation and direct applications. Mean Value Theorems of Lagrange and Cauchy (no proof) and applications (5). Indeterminate Forms: L' Hospital's Rule: statement and problems only (2). Statement of Taylor's and Maclaurin's Theorem with Lagrange's & Cauchy's form of remainders. Taylor's and Maclaurin's infinite series for functions like $exp(x)$, $sin(x)$, $cos(x)$, $ln(1+x)$ (with restrictions wherever necessary)(5). Application of the principle of maximum and minimum for a function of a single variable in geometrical, physical and other problems (3).		
Learning Outcomes * ³	On successful completion of the course a student will be able to do the following:		
	 Gain insights in managerial decision to choose the best possible course of action to optimize resource allocation of a real-life problem keeping in mind the linear constraints involved: this has useful application in logistics and economical systems. Understand dual nature of real-life problems and how to utilise the duality to solve a given problem more easily. Learn Game theory as the study of mathematical models of strategic interaction in between rational decision-makers and discusses its applications in different fields of social sciences. Learn to find whether the dependent variable is increasing/decreasing with increase in independent variable value and the rate of Increment/decrement. Get familiarity with conditions under which approximate value of a dependent variable may be found when value of the variable and rate of change of that variable at a nearby point are known. 		

	 Learn techniques in establishing bounds between which an unknown quantity lies. Will be able to search for minimum/maximum value of a given dependent variable: this has useful role in optimization in physical and economical systems. 	
Reading/Reference Lists *4	 Introduction to Real Analysis—Bartle, Sherbert Real Analysis—S.K.Mapa Linear Programming and Network Flows: Bajara & Jarvis Linear Programming: P.M.Karak Online lectures: <u>https://youtu.be/9EazAcwS3S0</u> <u>https://youtu.be/tffrrtzUhmw</u> 	
Evaluation	Theory CIA: 20+5+5=30	Practical (if applicable) CA:
Paper Structure for Theory Semester Exam	Semester Exam: 70Semester Exam:Module-1 [50 marks]: 5 questions each carrying 10 marks out of 9 questions.10 marksModule-2 [20 marks]: 2 questions each carrying 10 marks out of 4 questions.	