Semester	III	
Course	Minor	
Paper Code	B2MT230321T	
Paper Title	Numerical Methods [Economics +Computer Science]	
No. of Credits	4	
Theory / Practical / Composite	Theory 4	
Minimum No. of preparatory hours per week a student has to devote		
Number of Modules	Nil	
Syllabus	Sources of Error in Numerical Methods [4]: Accuracy and Precision, Absolute error , Relative Error, Sources of Error : Truncation error and Round-Off error ;[2]; Error of a sum, difference, product & quotient of two approximate numbers [2].	
	Operators in Finite Differences [4]: Δ , ∇ , μ , δ , E (Definitions and simple relations among them)[4].	
	Interpolation [12]: Polynomial Interpolation, Difference Tables, (Deduction) of Newton's Forward and Backward interpolation; Lagrange's interpolation formula; Newton's Divided Difference formula; properties and related problems. [12]	
	Numerical Integration [6]: Integration of Newton's	
	interpolation formula. Newton-Cotes' formula.	
	Basic Trapezoidal, Simpson's 1/3 rd, rule and their	
	composite forms. Degree of precision (definition	
	only) and related problems. [6]	
	Numerical solution to non-linear equations [10]: Location of a real root by Tabular method. Bisection method. Regula-Falsi and Newton-Raphson methods, their geometrical significance. Fixed point iteration method.[10]	
	Numerical solution of a system of linear equations [8]: Direct methods— [Gauss elimination method, Operation count. Gauss-	

	Jordan elimination method][4]. Iterative methods—[Jacobi iteration method, Gauss- Seidel method] [4] Solution of Ordinary Differential equations [8] —Euler's method, Picard's method, Runge- Kutta method fourth order)[4]. (Single step methods) Multistep methods: Adam's Bashforth method. [4]	
Learning Outcomes	 Learning different types of error and its source and propagation. To be acquainted with different linear operators like Δ ∇δ μ E. To estimate value of unknown function and its derivative and corresponding error management. To find the value of an integral whose analytical solution is not known. To solve transcendental equation and linear system of equations and corresponding error estimation. To be acquainted with various technique of solving ODE. 	
Reading/Reference Lists	 (1) Elementary Numerical Analysis — Conte de Boor (2) Elementary Numerical Analysis — Atkinson (3) Numerical Analysis and Computational Procedures: S.A.Mollah 	
Evaluation	70	30
Paper Structure for Theory Semester Exam	7 questions each carrying 10 marks needs to be answered out of 12/13 questions.	