Semester	1		
Course	MAJOR		
Paper Code	C1CH230112T / C1CH230112P		
Paper Title	Organic Chemistry 1		
No. of Credits	THEORY: 3; PRACTICAL 1		
Theory / Practical / Composite	COMPOSITE		
Minimum No. of preparatory	03		
hours per week a student has			
to devote			
Number of Modules	THEORY: 3; PRACTICAL: 1		
Syllabus	Theory: 36 Lectures		
	Module 1: Stereochemistry 1 (12L)		
	Projection of organic molecules: Fischer Sawhorse Flying		
	wedge and Neuman projection formulae and interconversions		
	wedge and Newman projection formulae and interconversions.		
	Chirality in molecules and optical activity: Stereoisomerism,		
	chiral centre, stereogenic centre, molecular chirality, meso-		
	compounds, pyramidal inversion; plane polarised light and		
	polarimeter, optical rotation, specific rotation and molar rotation;		
	racemic compounds, optical purity and enantiomeric excess.		
	Symmetry elements in molecules.		
	Configurational nomenclature : D/L and R/S configuration:		
	anythro/thrao prof/part profixes syn/anti E/7 nomenclature		
	eryinto/inteo, prej/parj prejixes, syn/anti, E/Z homenciature,		
	combination of R/S - and E/Z - isomerism. Stereogenicity,		
	chirotopicity and pseudoasymmetry		
	Racemization and Resolution: Racemization through cationic,		
	anionic, radical intermediates etc. Resolution of racemic acids,		
	bases and alcohols.		
	Module 2: Chemistry of intermediates, polymerization and		
	nhysical properties (121)		
	<i>physical properties</i> (12L)		
	Chemistry of intermediates: carbocations (carbonium and		
	carbonium ions), carbanions, carbenes and nitrenes: generation		
	and stability, structure using orbital picture and		
	electrophilic/nucleophilic behavior of reactive intermediates		
	(elementary idea). Chemistry of benzyne: generation and		
	stability, structure using orbital picture and electrophilic &		
	nucleophilic behavior of reactive intermediates (elementary idea).		
	Carbon radicals: structure, generation, stability and reactivity		
	Polymerization : Introduction to polymerization radical estionic		
	anionic backhiting stan growth and shain growth		
	anome, backoning, step growth and chain growth		
	polymerization.		
	<i>Physical properties:</i> Relative stabilities of isomeric hydrocarbons		
	in terms of heat of hydrogenation, heat of combustion and heat of		

	formation. Melting point/boiling point and solubility of common		
	organic compounds in terms of covalent & non-covalent		
	intermolecular forces		
	Module 3: Substitution and Elimination Reactions		
	Module 5: Substitution and Elimination Reactions		
	Nucleophilic substitution reactions: substitution at sp ³ centre:		
	mechanisms (with evidence), relative rates & stereochemical		
	features: S_N1 , S_N2 , S_N2' , S_N1' (allylic rearrangement) and S_Ni ;		
	effects of solvent, substrate structure, leaving group and		
	nucleophiles (including ambident nucleophiles, cyanide &		
	nitrite); substitutions involving NGP; [systems: alkyl halides,		
	allyl halides, benzyl halides, alcohols, ethers, epoxides].		
	Elimination reactions: E1, E2, E1cB and Ei (pyrolytic syn		
	eliminations); formation of alkenes and alkynes; mechanisms		
	(with evidence), reactivity, regioselectivity (Savtzeff/Hofmann)		
	and stereoselectivity: comparison between substitution and		
	elimination: importance of Bredt's rule relating to the formation		
	c_{1} contraction, importance of breat since relating to the formation		
	UI U-U.		
	Identification of Pure Organic Compound		
	Solid compounds: oxalic acid, tartaric acid, citric acid, succinic		
	acid, resorcinol, urea, glucose, cane sugar, benzoic acid and		
	salicylic acid.		
	Liquid Compounds: formic acid, acetic acid, methyl alcohol, ethyl		
	alcohol, acetone, aniline, dimethylaniline, benzaldehyde,		
	chloroform and nitrobenzene.		
	Determination of boiling point of common organic liquid		
	compounds e.g., ethanol, cyclohexane, chloroform, ethyl methyl		
	ketone, cyclonexanone, acetylacetone, anisole, crotonaldenyde,		
	compounds should preferably be less than 160 °C1		
Learning Outcomes	Theory		
Learning Outcomes	To have basic knowledge about the		
	i) Stereochemistry of Organic molecules		
	ii) Reactive intermediates, polymerization and physical properties		
	iii) Aliphatic substitution reactions and elimination reactions		
	Practical:		
	Identification of pure solid and liquid organic compounds and		
	determination of boiling point of solid and melting point of liquid		
	organic compounds		
Reading/Reference Lists	Theory:		
	1. Clayden, J., Greeves, N. & Warren, S. Organic Chemistry,		
	Second edition, Oxford University Press, 2012.		
	2. Sykes, F. A guidebook to Mechanisin in Organic Chemistry, Pearson Education, 2003		
	3 Smith I.G. Organic Chemistry Tata McGraw-Hill Publishing		
	Company Limited.		
	4. Carey, F. A., Guiliano, R. M. Organic Chemistry, Eighth		
	edition, McGraw Hill Education, 2012.		
	5. Eliel, E. L. & Wilen, S. H. Stereochemistry of Organic		
	Compounds, Wiley: London, 1994.		

	6. Nasipuri, D. Stereochemistry of Organic Compounds, Wiley		
	Eastern Limited.		
	7. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling		
	Kindersley (India) Pvt. Ltd. (Pearson Education).		
	8. Finar, I. L. Organic Chemistry (Volume 1), Dorling Kindersley		
	(India) Pvt. Ltd. (Pearson Education)		
	9. Fleming, I. Molecular Orbitals and Organic Chemical Reactions, Reference/Student Edition, Wiley, 2009.		
	10. James, J., Peach, J. M. Stereochemistry at a Glance,		
	Blackwell Publishing, 2003.		
	11. Peacock, A. J., Calhoun, A. Polymer Chemistry: Properties		
	and Applications, Hanser Gardner Publications, 2006.		
	12. Robinson, M. J. T., Stereochemistry, Oxford Chemistry		
	Primer, Oxford University Press, 2005.		
	Practical: Nad, Mahapatra, Ghosal-Practical Chemistry		
Evaluation	Theory: 60	Practical: 40	
	Internal: 15 (CIA: 10; Other	CA: 30; Attendance 2	
	form of Assessment: 2;	Semester Exam: 08	
	Attendance: 3)		
	Semester Exam: 45		
Paper Structure for	Answer THREE out of FOUR, 15 marks of each questions.		
Theory Semester Exam			