Semester	Ι				
Course	Major				
Paper Code	C1EC230121T				
Paper Title	MATHEMATICAL METHODS IN ECONOMICS-I				
No. of Credits	4				
Theory/Practical /	Theory				
Composite					
No. of periods	4				
assigned					
Minimum No. of	Four (4)				
preparatory hours per					
week a student has to					
devote					
Course Outcomes /	1) To understand two vital tools for all of mathematics namely set operations and				
Learning Outcomes	functions.				
U U	2) To study sequences and series to gain intuition about the rather perplexing				
	notions of infinity and infinitesimally small numbers. Economic applications of				
	series and sequences, in particular the notion of discounting future stream of				
	payments or receipts, which is a critical aspect of judging the value of an				
	investment by a business or government.				
	3) In modelling economic problems we often assume that we can represent various				
	economic concepts by continuous functions. So it is important to know precisely				
	what is the content of this assumption, especially in many instances there is a				
	natural reason to believe that the function will not be continuous everywhere,				
	and in such cases this turns out to be an important consideration from an				
	economic standpoint.				
	4) To introduce basic concepts of integration of functions and difference equations				
Syllobus	Madula 1 (55 mayla)				
Synabus	1 Dealiminarias				
	Logic and proof techniques: sets and set operations: relations: functions				
	and their properties: number systems				
	2. Functions of one variable				
	Graphs: elementary types of functions: quadratic, polynomial, power, exponential,				
	logarithmic: sequences, series and limits, algebraic properties and				
	applications; continuous functions: characterizations, properties with respect to				
	various operations and applications; differentiable functions: characterizations,				
	properties with respect to various operations and applications; second and higher				
	order derivatives: properties and applications.				
	3. Single-variable optimization				
	Geometric properties of functions: linear concave and convex functions, their				
	characterizations and applications; local and global optima: geometric				
	characterizations, characterizations using calculus and applications.				
	Number of Classes per week: 3				
	Nodule 2 (15 marks)				
	4. Integration of Functions: Methods of integration, Definite Integral as area under				
	curve; Difference Equations: First order and second order with economic applications				
	Number of Classes per week: 1				

Readings	 K.Sydsaeter and Hammond, MathematicsforEconomicAnalysis, Pearson Educational Asia: Delhi,2002. E. Silberberg and Suen, Structure of Economics, McGraw-Hill A. Mukherjee and S.Guha, Mathematical Methods & Economic Theory, OxfordUniversity Press, 2011. K.G. Binmore, Mathematical Analysis, Cambridge University Press, 1991. Alpha Chiang and Kevin Wainwright, Fundamental Methods of Mathematical Economics, Econth Edition, Magaran, Hill, 2005. 					
Evaluation	Continuous Internal Assessment: 30 marks End- Semester Theory Examination: 70 marks					
Paper Structure for End Sem	Module	No. of Questions to beAnswered	No. of Alternatives	Marks		
	Module 1	3	4	5 x 3 = 15		
		4	5	10 x 4 = 40		
	Module 2	1	2	5 x 1 = 5		
		1	2	10 x 1 = 10		
		Total Marks	L	70	70	