Semester	2
Course	Major
Paper Code	C1EC230221T
Paper Title	MATHEMATICAL METHODS IN ECONOMICS-II
No. of Credits	4
Theory/Practical / Composite	Theory
No. of periods assigned	4
Minimum No. of preparatory hours per week a student has to devote	Four (4)
Course Outcomes / Learning Outcomes	1) A matrix provides a very powerful way of organising and manipulating data. So the students must be very well versed with matrix operations so as to apply in economic problems. 2) To introduce students to advanced topics like vector space,eigen values and quadratic forms which are essential for studying multivariate optimisation and dynamics. 3) To make students grasp the idea and techniques of higher derivatives to study concavity, convexity, quasi concavity and quasiconvexity defined on R^{n}. This will give them the tools to find extreme values and stationary values in case of functions of n variables. 4) Develop techniques for dealing with constraints which satisfy one or more functional equations while maximizing or minimizing a function. The fundamental objective in this section is the derivation and application of the method of Lagrange multiplier. 5) In line with the previous objective develop the concept of value function and envelope theorem so as to apply in economic problems. 6) To learn first and second order differential equations with applications

Syllabus	Module 1 (55 marks) 1. Linear algebra Vector spaces: Sub-space and basis, algebraic and geometric properties, scalar products, norms, orthogonality; linear transformations: properties, matrix representations and elementary operations; systems of linear equations: properties of their solution sets; determinants: characterization, properties and applications. 2. Functions of several variables Geometric representations: graphs and level curves; differentiable functions: characterizations, properties with respect to various operations and applications; second order derivatives: Jacobian and Hessian determinants, properties and applications; the implicit function theorem, and application to comparative statics problems; homogeneous and homothetic functions: characterizations and applications. 3. Multi-variable optimization Convex sets; geometric properties of functions: convex concave functions, their characterizations, properties and applications; further geometric properties of functions: quasiconvex and quasiconcave functions, their characterizations, properties and applications; unconstrained optimization: geometric characterizations, characterizations using calculus and applications; constrained optimization with equality constraints: geometric characterizations, Lagrange's method; value function, envelope theorem. Number of Classes per week: 3

Readings	1) K. Sydsaeter and P. Hammond, Mathematics for Economic Analysis, Pearson Educational Asia: Delhi, 2002. 2) Lawrence Blume and Carl Simon, Mathematics for Economists, W.W. Norton and Company, 1994. 3) Alpha Chiang and Kevin Wainwright, Fundamental Methods of Mathematical Economics, Fourth Edition, Mc-graw Hill, 2005. 4) Mukherjee and S.Guha, Mathematical Methods \& Economic Theory, Oxford University Press, 2011. 5) G. Hadley, Linear Algebra, Addison Wesley			
Evaluation	Continuous Internal Assessment: 30 marks End- Semester Theory Examination: 70 marks			
Paper Structure for Semester Exam	Module	No. of Questions to be Answered	No. of Alternatives	Marks
	Module 1	3	4	$5 \times 3=15$
		4	5	$10 \times 4=40$
	Module 2	1	2	$5 \mathrm{X} 1=5$
		1	2	$10 \times 1=10$
	Total Marks			70

