Semester	2			
Course	Major			
Paper Code	C1EC230221T			
Paper Title	MATHEMATICAL METHODS IN ECONOMICS-II			
No. of Credits	4			
Theory/Practical /	Theory			
Composite				
No. of periods	4			
assigned				
Minimum No. of	Four (4)			
preparatory hours per				
week a student has to				
devote				
Course Outcomes /	1) A matrix provides a very powerful way of organising and			
Learning Outcomes	with matrix operations so as to apply in economic problems			
	2) To introduce students to advanced tonics like vector			
	space.eigen values and quadratic forms which are essential			
	for studying multivariate optimisation and dynamics.			
	3) To make students grasp the idea and techniques of higher			
	derivatives to study concavity, convexity, quasi concavity and			
	quasiconvexity defined on R ⁿ . This will give them the tools to			
	of n variables			
	4) Develop techniques for dealing with constraints which satisfy			
	one or more functional equations while maximizing or			
	minimizing a function. The fundamental objective in this			
	section is the derivation and application of the method of			
	Lagrange multiplier.			
	5) In line with the previous objective develop the concept of			
	value function and envelope theorem so as to apply in economic problems.			
	o) to learn first and second order differential equations with applications			

Syllabus	llobus Madala 1 (55 marta)				
Synabus	Niodule 1 (55 marks)				
	1. Linear algebra Vector spaces: Sub-space and basis, algebraic and geometric properties, scalar products, norms, orthogonality; linear transformations: properties, matrix representations and elementary operations; systems of linear equations: properties of their solution sets; determinants: characterization, properties and applications.				
	2 Functions of several variables				
	Geometric representations: graphs and level curves; differentiable functions: characterizations, properties with respect to various operations and applications; second order derivatives: Jacobian and Hessian determinants, properties and applications; the implicit function theorem, and application to comparative statics problems; homogeneous and homothetic functions: characterizations and applications.				
	3 Multi variable entimization				
	3. Multi-variable optimization Convex sets; geometric properties of functions: convex concave functions, their characterizations, properties and applications; further geometric properties of functions: quasiconvex and quasiconcave functions, their characterizations, properties and applications; unconstrained optimization: geometric characterizations, characterizations using calculus and applications; constrained optimization with equality constraints: geometric characterizations, Lagrange's method; value function, envelope theorem. Number of Classes per week: 3				
	Module 2 (15 marks)				
	Differential Equations: First & Second Order with Applications				
	Number of Classes per week: 1				

Readings	 K. Sydsaeter and P. Hammond, Mathematics for Economic Analysis, Pearson Educational Asia: Delhi, 2002. Lawrence Blume and Carl Simon, Mathematics for Economists, W.W. Norton and Company, 1994. Alpha Chiang and Kevin Wainwright, Fundamental Methods of Mathematical Economics, Fourth Edition, Mc-graw Hill, 2005. Mukherjee and S.Guha, Mathematical Methods & Economic Theory, Oxford University Press, 2011. G. Hadley, Linear Algebra, Addison Wesley 					
Evaluation	Continuous Internal Assessment: 30 marks End- Semester Theory Examination: 70 marks					
Paper Structure for Semester Exam	Module	No. of Questions to be Answered	No. of Alternatives	Marks		
	Module 1	3	4	5 X 3 = 15		
		4	5	10 X 4 = 40		
	Module 2	1	2	5 X 1 = 5		
		1	2	10 X 1 = 10		
	Total Marks			70		