

Learning Outcomes	(1) Will be able to handle Scalar and Vector Fields Comfortably (module A) (2) Will be able to translate between various coordinate systems (module A) (3) Will be able to visualize solutions to differential equations as direction fields (module A) (4) Development of visual techniques for curves and surfaces (module B) (5) Develop basic capabilities in handling data (module B) (6) Will be able to write small scripts using Python (module B) (7) Will be able to help in future study of GPS, Geosciences and Mathematical Modelling in diverse fields of studies. (module A) (8) Will complement (7) through computer aided techniques and programming (module B)
Reading/Reference Lists	Module A 1. Online refs.: Kreyszig 2. Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 2013, 7thEdn., Elsevier. 3. Mathematical Tools for Physics, James Nearing, 2010, Dover Publications. 4. Mathematical Physics, Goswami, 1st edition, Cengage Learning 5. Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India. 6. Essential Mathematical Methods, K.F.Riley \& M.P.Hobson, 2011, Cambridge Univ. Press 7. Mathematical methods in the Physical Sciences, M. L. Boas, 2005, Wiley 8. Vector Analysis, Murray R. Spiegel, Schaum Series 9. Introduction to Electrodynamics by David J. Griffiths Module B 1. Main online Refs: Langtangen, Kong et al 2. Computational Physics, D.Walker, 1st Edn., 2015, Scientific International Pvt. Ltd. 3. Computational Physics Mark Newman, CreateSpace Independent Publishing Platform (2012) 4. Computational Physics: Problem Solving with Python, 3rd Edition, Rubin Landau, Manuel J. Paez, Cristian C. Bordeianu 5. Learning Scientific Programming with Python, Christian Hill, CUP 6. Scientific Computing in Python (Revised edition, Python 3), Abhijit Kar Gupta
Evaluation	Theory: $60 \times$ Practical: 40

	CIA: 15 (10 + 2/assgn + 3/attn.) Semester Exam: 45	CA: 30 Semester Exam: 8 + 2/attn.
Paper Structure for Theory Semester Exam	15 Marks from 3 marks questions (5 out of 7) 30 Marks from 10 marks questions (3 out of 4)	

