Semester	П	
Course ^{*1}	Major	
Paper Title / Code	Math Methods 2 & Clab 2 / C1PH230212T & C1PH230212P	
No. of Credits * ²	4	
Theory / Practical /	Composite	
Composite		
Minimum No. of	4	
preparatory hours per week		
a student has to devote		
Number of Modules	2	
Syllabus		
	Module A: Math Methods 2	
	[36L]	
	Second order linear homogeneous and non- homogenous ODEs. Phase plane methods for system of ODEs.	
	[10 L]	
	Series solution of ODEs: Power series method. Legendre Polynomials. Frobenius Method.	
	[10 L]	
	The matrix Eigenvalue Problem: Determination of eigenvalues and eigenvectors, applications. Symmetric, Skew symmetric and Orthogonal matrices, diagonalisation	
	and quadratic forms of matrices, Hermitian and Unitary matrices.	
	[8 L]	
	Complex Variables:	
	Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions, Harmonic functions. Examples of analytic functions.	
	[8 L]	

	Module B: Computation - lab 2 [24L]	
	Array computing in Python: Introduction to the numpy, scipy and matplotlib modules. Making use of Numerical libraries for Reading and Writing Data files, Visualisation and plotting, Distribution functions, 2D solutions of the equations of mathematical physics, root finding for nonlinear equations, determination of eigenvalues, interpolation and curve fitting.	
	[12 L]	
	Implementation of the following algorithms: 1. Basic root finding techniques: Bisection and Newton Raphson	
	2. Linear Least squares method.	
	3. Matrix inversion Testing output against known solutions and/or comparing them with output from library functions.	
	[12 L]	
Learning Outcomes * ³	 (1) Apply the powerful method of series solution of second order differential equations (simple cases) (module A) (2) Lead into special functions and their polynomial representation (module A) (3) Understand the Matrix Eigenvalue problem (module A) (4) Learn and apply the concept of analyticity of complex functions (module A) (5) Learn about the advantages of matrix computation (module B) (6) Learn to find numerical roots to nonlinear algebraic equations and curve fitting (module B) (7) Getting prepared for Quantum Mechanics, Advanced Mathematical formulations of Physics, parallelising code for computational efficiency, and find patterns in data. (module B) (8) 	

Reading/Reference Lists *4	Module A		
Reduing/Reference Lists	Moutie A		
	 Scientific Computing in Python (Revised edition, Python 3) Introduction to Electrodynamics by David J. Griffiths Fundamentals of Complex Analysis with Applications to Engineering, Science, and Mathematics, E. B. Saff and A. D. Snider, Pearson Mathematical Methods for Physics and Engineering, K. F. Riley, M. P. Hobson and S. J. Bence, CUP Differential Equations, Shepley L. Ross, Willey India Module B Online Refs: Langtangen, Kong et al Numpy beginners guide, Idris Alba, 2015, Packt Publishing Computational Physics, D.Walker, 1st Edn., 2015, Scientific International Pvt. Ltd. Computational Physics: Problem Solving with Python, 3rd Edition, Rubin Landau, Manuel J. Paez, Cristian C. Bordeianu Learning Scientific Programming with Python, Christian Hill, CUP Scientific Computing in Python (Revised edition, Python 3), Abhijit Kar Gupta, 		
Evaluation	Theory CIA: 15	Practical (if applicable) CA: 30	
	Semester Exam: 45	Semester Exam: 10	
Paper Structure for Theory Semester Exam	5 Q / 7 Q, each 3 Marks + 3Q/4Q each 10 Marks : 45		

Template for Paper Submission

- *1: Major / Minor / Multi-Disciplinary / Ability Enhancement / Skill Enhancement / Value-Added.
- *2: In case of composite paper, kindly mention the credit allotted to theory and practical components separately.
- *3: Learning outcomes should preferably contain one or two outcomes related to social / environmental consciousness.
- *4: The list should preferably contain one or two online courses developed by SWAYAM, NPTEL, etc.