\(\left.$$
\begin{array}{|l|l|}\hline \text { Semester } & \text { ONE } \\
\hline \text { Course }{ }^{* 1} & \text { Major } \\
\hline \text { Paper Code } & \text { C1ST230121T } \\
\hline \text { Paper Title } & \text { Probability and Probability Distributions I } \\
\hline \text { No. of Credits } & \text { 4 } \\
\hline \begin{array}{l}\text { Theory / Practical / } \\
\text { Composite }\end{array} & \text { Theory } \\
\hline \begin{array}{l}\text { Minimum No. of } \\
\text { preparatory hours per } \\
\text { week a student has to } \\
\text { devote }\end{array} & 4 \\
\hline \text { Number of Modules } & \text { 1 } \\
\hline \text { Syllabus } & \begin{array}{l}\text { UNIT 1: } \\
\text { Probability: Introduction, random experiments, sample space, events. } \\
\text { Definitions of Probability - classical, statistical and axiomatic. } \\
\text { [5L] }\end{array} \\
\hline \begin{array}{l}\text { UNIT 2: } \\
\text { Rules of Probability and their Applications: Derivation of the } \\
\text { probability of at least one event out of n events, n (>1) being finite. } \\
\text { Statement of the probabilities of at least m and exactly m out of n } \\
\text { events, n (>m) being finite. } \\
\text { [7L] }\end{array} \\
\hline \text { Learning Outcomes } & \begin{array}{l}\text { UNIT 3: } \\
\text { Conditional Probability: The concept of Conditional Probability, end of the course a student should } \\
\text { theorem of compound probability, theorem of total probability, } \\
\text { Bayes theorem and its applications, independent events. } \\
\text { [10L] }\end{array} \\
\hline & \begin{array}{l}\text { UNIT 4: } \\
\text { Univariate probability distribution: Random Variables - discrete }\end{array}
$$ \\
and continuous. Concept of the probability distribution of a random \\
variable. Probability Mass and Density functions. Cumulative \\
distributions function (CDF) and the statement of properties of CDF. \\
Illustrations in both discrete and continuous situations. Moments and \\
Quantiles. Measures of Central Tendency, Dispersion, Skewness and \\

Kurtosis.\end{array}\right\}\)| UNIT 5: |
| :--- |
| Bivariate probability distribution: Discrete and Continuous Joint |
| Distributions. Bivariate Probability Mass and Density functions. |
| Cumulative distributions function (CDF) and the statement of |
| properties of CDF. Marginal and Conditional distributions. |
| Independence. Correlation and Linear Regression. |
| [10L] |

	- Understand different definitions and meaning of Probability. Know different laws of probability and the theorems connecting them. Be able to apply the laws of probability. Know the notion of conditional probability. Understand what is a random variable and its probability distribution. Understand different aspects of univariate probability distribution - both discrete and continuous. Understand different aspects of bivariate probability distribution - both discrete and continuous.	
Reading/Reference Lists	1. Hogg, R.V., Tanis, E.A. and Rao J.M. (2009): Probability and Statistical Inference, Seventh Ed, Pearson Education, New Delhi. 2. Miller, Irwin and Miller, Marylees (2006): John E. Freund's Mathematical Statistics with Applications, (7th Edn.), Pearson Education, Asia. 3. Myer, P.L. (1970): Introductory Probability and Statistical Applications, Oxford \& IBH Publishing, New Delhi . 4. S.M. Ross : A First Course in Probability. 5. K.L. Chung : Elementary Probability Theory with Stochastic Process. 6. https://www.coursera.org/learn/introductiontoprobability 7. https://www.udemy.com/topic/statistics/	
Evaluation	Theory CIA: 30 Semester Exam: 70	Practical (Not applicable) CA: Semester Exam:
Paper Structure for	Short Questions (5 Marks Each)	Long Questions (15 Marks Each)
	5 out of 7	3 out of 5

