Semester	3		
Course	Major		
Paper Code	C2CH230312T		
Paper Title	Physical Chemistry 2		
No. of Credits	3 Theory+1 Practical		
Theory / Practical / Composite	Composite		
Minimum No. of preparatory	10		
hours per week a student has			
to devote			
Number of Modules	03		
Syllabus			
	Module 1. Chemical Thermodynamics II (12 Lectures)		
	1. Need for the Second Law: reversibility and spontaneity of a process		
	2. Caratheodory's principle		
	3. Principle of increase in entropy of the universe in natural		
	processes		
	4. Clausius inequality		
	5. heat engine and refrigerator		
	6. Entropy change of the universe and maximum work for reversibility		
	7. Carnot cycle, efficiency		
	8. Kelvin-Plank and Clausius Statements of the second law;		
	their equivalence: impossibility of attaining absolute zero		
	of temperature		
	9. Carnot theorem		
	10. Combined first and second law		
	11. Thermodynamic equations of states		
	12. Auxiliary state functions – Gibbs and Helmholtz free energies, calculation in their change in different types of		
	processes		
	13. Maxwell relations		
	14. Revisiting Joule-Thomson experiment: isenthalpic lines and T-P diagram		
	15. Temperature dependence of Gibbs free energy: Gibbs- Helmholtz equations		
	16. Gibbs free energy of real gases and fugacity		
	17. Chemical potential of pure substances		
	18. Partial molar quantities		
	19. Gibbs-Duhem equation		
	Module 2: Quantum Mechanics II (12 Lectures)		
	 Operators, Linear operators Hermitian operators: definition and properties 		

	3.	Postulates of Quantum Mechanics
2	4.	Schrödinger equation
4	5.	Solution of Schrödinger equation as wave function and energy (eigenvalues and eigenfunctions)
	6	Commutators and their implication with respect to x px
	0. 7	Expectation values
s	7. 8	Properties of eigenfunctions
	0. Q	Energy quantization
). 10	Simple systems: 1 D 2 D 3 D box (eigenvalues
	10.	eigenfunctions, expectation values, quantum numbers, degeneracy, probability density)
	11.	Simple Harmonic Oscillator: Setting the Schrödinger equation, derivation, eigenvalues and eigenfunctions, zero-point energy
-	12.	Tunneling- Basic concepts
	Module	3: Electrochemistry I (12 Lectures)
	1	Flow of charge through conductor metallic and
	1.	electrolytic conduction
	2.	Week and strong electrolytes: Arrhenius classification
	3.	Forces on an ion and its dynamics in an ideal solution
		across an applied potential difference
2	4.	Validity of Ohm's law and resistance equation in
		electrolytic solution
4	5.	Conductance, specific conductance, equivalent conductance and their inter-relation
	6.	Mobility of ions in ideal solution: inter-relation to conductance, specific conductance and equivalent conductance
-	7	Reason for choosing conductance instead of resistance
8	8.	Variation in conductance, specific conductance and equivalent conductance with concentration variation in
		ideal solution of strong and weak electrolytes
	9.	Effect of dilution, dielectric constant of solvent, viscosity of solvent and temperature on conductance of strong and weak electrolytes
	10.	Origin of non-ideality in electrolytic solution: activity and
	- ••	mean ionic activity of an electrolyte
	11.	Electrophoretic effect: effect of non-ideality on viscous force acting on an ion in electrolytic solution
	12	Asymmetric affect: affect of local electric field due to
-	12.	asymmetric ionic atmosphere
	13	Debye-Huckel limiting law: expression of mean ionic
	10.	activity coefficient in ideally dilute solution
	14	Determination of acidity constant of a weak acid: Ostwald
	17.	dilution law, ionic product of water, determination of ionic
		radıı
-	15.	Infinitely dilute solution and withdrawal of ion-ion
	1.0	interaction in electrolytic solution: Kohlrausch's law
-	16.	Transport number and its determination: Hittorf and moving boundary method

	17.	Effect of concentration and temperature variation on	
	10	transport number	
	18.	Abnormal transport number	
	19.	Conductometric acid have and precipitation titrations	
	20.	Conductometric acid-base and precipitation itrations	
	Practio	cals:	
	1.	Study of first order kinetics of decomposition of H_2O_2 by	
		clock method	
	2.	Study of kinetics of hydrolysis of esters by titrimetric	
		method	
	3.	Kinetics of base catalysed ester hydrolysis by	
	4	conductometric method	
	4.	Determination of thermodynamic solubility product of KHTa	
	5.	pH-metric estimation of monobasic and dibasic acid and	
		determination of pK_a or pK_2 , wherever applicable	
	6.	Determination of solubility product of a sparingly soluble	
		salt (AgCl) by conductometric method.	
Learning Outcomes	Theory	<i>.</i>	
	1. They	will also develop the concepts of classical thermodynamics	
	at the macroscopic level and learn through problem solving at		
	different levels of complexity.		
	2. The	Schrodinger equation will be introduced with the ground	
	work o	f operators.	
	Some examples with zero and non-zero potentials will be		
	discuss	sed. Solution of the corresponding Schrödinger equation,	
	leading	to the eigenstates and corresponding	
	a The	aturs will be allalysed.	
	the rela	ation between flux and force will be introduced. Expressions	
	will be	e derived that govern the migration of properties through	

	 matter. One of the most usef approach is the formulation of the Practicals: 1. Study of kinetics titrimetrical 2. Study of solubility prod titrimetrically and conductometrical 	ful consequences of this general he diffusion equation. ly and conductometrically uct of sparingly soluble salts rically.	
Reading/Reference Lists	 Glasstone, S, Thermodynamics for Chemists, EWP. Zemansky, M. W. & Dittman, R.H. Heat and Thermodynamics, TataMcGraw-Hill. Denbigh, K. The Principles of Chemical Equilibrium Cambridge University Press. Nag, A. K, Physical Chemistry Vol. 1, 2, Mcgraw Hill. Klotz, I.M., Rosenberg, R. M. Chemical Thermodynamics: Basic Concepts and Methods, Wiley. Sears, F. W., Salinger, G. L., Thermodynamics, Kinetic Theory, and Statistical Thermodynamics (Addison-Wesley Principles of Physics Series), Pearson; 3rd edition Metiu, H., Physical Chemistry: Thermodynamics, Taylor and Francis. Kaufman, M., Principles of Thermodynamics, Taylor and Francis. Kaufman, M., Principles of Thermodynamics, Taylor and Francis. Honig, J. M., Thermodynamics, Academic Press. Glasstone, S. An Introduction to Electrochemistry, East-West Press. Levine, I. N. Quantum Chemistry, PHI. Atkins, P. W. and Friedman, Molecular Quantum Mechanics, Oxford. Eisberg, R., Resnick, R, Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles, 2ed, Wiley. Griffiths, D. J., Introduction to Quantum Mechanics, Cambridge India. Heimz, P. C., Rajagopalan, R., Principles of Colloid and Surface Chemistry, Marcel Dekker. Practicals: Mukherjee, G. N., University Hand Book of Undergraduate Chemistry Experiments 		
Evaluation	Theory: 60 Internal: 15 (CIA: 10; Other form of Assessment: 2; Attendance: 3) Semester Exam: 45	Practical: 40 CA: 30 ; Attendance:2 Semester Exam: 8	
Paper Structure for Theory Semester Exam	Answer SEVEN out of NINE questions, of 10 marks each.		