Semester	4		
Course	Major		
Paper Code	C2CH230412T/ C2CH230412P		
Paper Title	Organic Chemistry 3		
No. of Credits	3 Theory+1 Practical		
Theory / Practical / Composite	Composite		
Minimum No. of preparatory	10		
to devote			
Number of Modules	03		
Syllabus	Module I: Aromatic Substitution 12L		
	Aromatic electrophilic substitution: General mechanism and		
	evidences in favour of it. ArES reactions: nitration, nitrosation,		
	sulfonation, halogenation, Friedel-Crafts reaction;		
	chloromethylation reactions with mechanism. Orientation and		
	reactivity towards electrophilic substitution for mono-substituted		
	aromatic compounds. Named reactions based on ArES:		
	Gatterman-Koch, Gatterman, Houben-Hoesch, Vilsmeier-Haack,		
	Reimer-Tiemann, Kolbe-Schmidt. Ipso substitituion.		
	Nucleophilic aromatic substitution: Mechanism and evidences in		
	favour of it; S_NAr mechanism; Meisenheimer complex; cine		
	substitution through benzyne intermediate.		
	Module II: Carbonyl compounds-II 12L		
	Exploitation of acidity of α -H of C=O: formation of enols and		
	enolates; kinetic and thermodynamic enolates; reactions		
	(mechanism with evidence): halogenation of carbonyl compounds		
	under acidic and basic conditions, Hell-Volhard-Zelinsky (H. V. Z.)		
	reaction, nitrosation, SeO ₂ (Riley) oxidation; condensations		
	(mechanism with evidence): Aldol, Tollens', Knoevenagel,		
	Claisen-Schmidt, Claisen ester including Dieckmann, Stobbe;		
	Mannich reaction, Perkin reaction, Favorskii rearrangement;		
	alkylation of active methylene compounds; preparation and		
	synthetic applications of diethyl malonate and ethyl acetoacetate;		
	specific enol equivalents (lithium enolates, enamines, aza-		
	enolates and silyl enol ethers) in connection with alkylation,		
	acylation and aldol type reaction.		

Nucleophilic addition to α , β -unsaturated carbonyl system: general principle and mechanism (with evidence); direct and conjugate addition, addition of enolates (Michael reaction), Stetter reaction, Robinson annulation.

Substitution at sp^2 carbon (C=O system): mechanism (with evidence): $B_{AC}2$, $A_{AC}2$, $A_{AC}1$, $A_{AL}1$ (in connection to acid and ester); acid derivatives: amides, anhydrides & acyl halides (formation and hydrolysis including comparison).

Module III: Organometallic compounds and Carbocycles 12L Grignard reagent; Organolithiums; Gilman cuprates: preparation and reactions (mechanism with evidence); addition of Grignard and organolithium to carbonyl compounds; substitution on -COX; directed ortho metalation of arenes using organolithiums, conjugate addition by Gilman cuprates; Corey-House synthesis; abnormal behavior of Grignard reagents; comparison of reactivity among Grignard, organolithiums, Organocadmium and organocopper reagents; Reformatsky reaction; Blaise reaction; base-nucleophile dichotomy in case of organometallic reagents.

Polynuclear hydrocarbons and their derivatives: synthetic methods include Haworth, Bardhan-Sengupta, Bogert-Cook and other useful syntheses (with mechanistic details); fixation of double bonds and Fries rule; reactions (with mechanism) of naphthalene, anthracene, phenanthrene and their derivatives.

Practical

Single-step organic synthesis

Organic preparations and detection of final compounds by melting point and TLC by locating solvent front and calculating R_f values 1. Nitration of aromatic compounds

2. Condensation reactions

Synthesis of dibenzylidene acetone from benzaldehyde and acetone

- 3. Hydrolysis of amides/imides/esters
- 4. Benzoylation of phenols/aromatic amines

	5. Side chain oxidation of aromatic compounds: Synthesis of p-	
	nitrobenzoic acid from p-nitrotoluene by potassium dichromate	
	in concentrated sulphuric acid.	
	6. Bromination of aniline using green approach (Bromate-Bromide	
	method)	
	7. Coloctive reduction of m divitual encode to m nitrochiling	
	7. Selective reduction of <i>m</i> -dinitrobenzene to <i>m</i> -nitroanline	
Learning Outcomes	Theory.	
	Theory.	
	To have knowledge about-	
	i) Substitution reactions in aromatic compounds	
	ii) Reaction and synthesis of Carbonyl and Related Compounds	
	iii) Brief idea about organometarite compounds and carbocycles	
	Practical:	
Reading/Reference Lists	Single-step organic synthesis	
Reading/Reference Lists	1. Clayden, J., Greeves, N., Warren, S. Organic Chemistry, Second	
	edition, Oxford University Press 2012.	
	2. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education 2003	
	3. Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing	
	Company Limited.	
	4. Carey, F. A. & Sundberg, R. J. ADVANCED ORGANIC CHEMISTRY PART A STRUCTURE AND MECHANICSMS	
	Fifth edition, Springer, 2008.	
	5. Carey, F. A. & Sundberg, R. J. ADVANCED ORGANIC	
	edition, Springer, 2008.	
	6. Loudon, G. M. Organic Chemistry, Fourth edition, Oxford	
	University Press, 2008.	
	Eastern Limited.	
	8. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling	
	Kindersley (India) Pvt. Ltd. (Pearson Education).	
	10. Maskill, H., Mechanisms of Organic Reactions, Oxford	
	Chemistry Primer, Oxford University Press.	
	11. Norman, R. O. C. & Coxon, J. M. Principles of Organic Synthesis Nelson Thornes I td 1993	
	Synthesis, Nelson Thomes Edd, 1995.	
	Practical	
	Small scale Preparations, CBS Publishers and Distributors.	
	2. University Hand Book of Undergraduate Chemistry	
	Experiments, edited by Mukherjee, G. N. University of Calcutta,	
	3. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry.	
	Pearson Education (2009).	

	4. Furniss, B.S., Hannaford, A.J., Smith, P.W.G. & Tatchell, A.R.		
	Practical Organic Chemistry, 5th Ed. Pearson (2012).		
	5. Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical		
	Organic Chemistry: Preparation and Quantitative Analysis,		
	University Press (2000).		
	6. Practical Workbook Chemistry (Honours), UGBS, Chemistry,		
	University of Calcutta, 2015.		
Evaluation	Theory: 60	Practical: 40	
	Internal: 15 (CIA: 10; Other	CA: 38; Attendance:2	
	form of Assessment: 2;		
	Attendance: 3)		
	Semester Exam: 45		
Paper Structure for	Answer THREE out of FOUR questions, of 15		
Theory Semester Exam	marks each.		