Semester	4
Course	Major
Paper Code	C2CH230421T
Paper Title	Physical Inorganic Chemistry 3
No. of Credits	Theory: 2
Theory / Practical / Composite	Theory
Minimum No. of preparatory	12
hours per week a student has	
to devote	
Number of Modules	04
Syllabus	Gr. A: Physical Chemistry 3
	Module I: Chemical Equilibrium 12 L
	1. Chemical potential of a component in a mixture
	2. Scales of chemical potential
	3. Thermodynamics of mixing of ideal gases
	 Gibbs equations for system with variable composition
	5. Conditions of spontaneity and equilibrium in terms of
	internal energy, Enthalpy, Gibbs and Helmholtz free energy
	6. Molar Gibbs free energy and its change in a reacting
	system and its thermodynamic expression
	7. Concept of standard state free energy change of a reaction
	in pressure and concentration scale
	8. Equilibrium constant: partial pressure, concentration and
	mole fraction scale and their inter-relation
	9. Activity and concentration: equilibrium constant in
	activity scale
	10. Effect of temperature and pressure on equilibrium
	constants
	11. Equilibrium in heterogeneous reaction
	12. Perturbing the state of equilibrium: Le Chatelier principle
	13. Solubility equilibria
	14. Salt effect
	15. Nernst distribution law and generalized Distribution
	equilibrium
	Module II: Quantum Mechanics III 12 L
	1. Particle on a Ring
	2. Concept of the effective potential
	 Concept of the effective potential Particle on a sphere: coordinate system
	 Form of Schrodinger equation in polar coordinates
	Cartesian co-ordinates and reduction to one particle system
	6. The diatomic rigid rotor: solution of theta and phi part
	(derivation)
	7. Generation and properties of the Spherical Harmonics.
	8. Expression of L^2 , L_z in polar coordinate, physical
	significance
	9. Shift Operators and their significance.

	10 Concert of offective notential
	10. Concept of effective potential
	11. Central force problem and formulation of the Schrödinger
	equation for hydrogen atom
Learning Outcomes	Theory:
	1. Concept of chemical potential is developed showing that it is a
	particular case of properties called partial molar quantities.
	Then it explores how to use the chemical potential of a substance
	to describe the physical properties of mixtures.
	The concept of chemical potential is used to account for the
	equilibrium composition of chemical reactions. The former
	corresponds to a minimum in the Gibbs energy plotted against the extent of reaction.
	The thermodynamic formulation of equilibrium enables one to
	establish the quantitative effects of changes in the conditions like
	temperature and pressures.
	2. Quantum mechanical application for quantisation of rotational
	motion will be discussed.
	The corresponding equation for a particle in s spherically
	symmetric Coulomb potential and the possible solutions will be
	analysed. The treatment will be extended to hydrogenlike systems.
Reading/Reference Lists	1. Glasstone, S, Thermodynamics for Chemists, EWP.
	2. Zemansky, M. W. & Dittman, R.H. Heat and Thermodynamics, Tata McGraw-Hill.
	3. Denbigh, K. The Principles of Chemical Equilibrium,
	Cambridge
	University Press.
	4 Nag, A. K, Physical Chemistry Vol. 1, 2, Mcgraw Hill.
	5. Klotz, I.M., Rosenberg, R. M. Chemical Thermodynamics:
	Basic
	Concepts and Methods, Wiley.
	6. Sears, F. W., Salinger, G. L., Thermodynamics, Kinetic Theory,
	and Statistical Thermodynamics (Addison-Wesley Principles of
	Physics Series), Pearson; 3rd edition.7. Metiu, H., Physical Chemistry: Thermodynamics, Taylor and
	Francis.
	8. Kaufman, M., Principles of Thermodynamics, Taylor and
	Francis
	9. Honig, J. M., Thermodynamics, Academic Press.
	10. Levine, I. N. Quantum Chemistry, PHI.
	11. Atkins, P. W. and Friedman, Molecular Quantum Mechanics,
	Oxford.
	12. Eisberg, R., Resnick, R, Quantum Physics of Atoms,
	Molecules, Solids, Nuclei and Particles, 2ed, Wiley.
	13. Griffiths, D. J., Introduction to Quantum Mechanics, Cambridge India.
Syllabus	Gr. B: Inorganic Chemistry 3
~ ;	Module I: Redox Chemistry and Applications12 L
	Ion-electron method of balancing equation of redox reaction.
	Elementary idea on standard redox potentials with sign
	conventions, Nernst equation (without derivation). Influence of
i i i i i i i i i i i i i i i i i i i	complex formation, precipitation and change of pH on redox

	potentials; formal potential. Feasibility of a redox titration, redox potential at the equivalence point, redox indicators. Redox potential diagram (Latimer and Frost diagrams) of common elements and their applications. Disproportionation and comproportionation reactions.
	Module II: Acid-Base and solubility equilibria12 LAcid-base equilibria in aqueous solution (proton transfer equilibria in water); pH, hydrolysis of salt, buffer; acid-base neutralization curves; indicators, choice of indicators.Solubility product principle, common ion effect and their applications to the precipitation and separation of common metallic ions as hydroxides, sulfides, phosphates, carbonates, sulfates and halides.
Learning Outcomes	Theory:
	 To build up basic concepts about redox chemistry and their applications in several inorganic reactions as well as in quantitative analysis. To have the ideas of ionic equilibrium and the concept of solubility product as well as their applications.
Reading/Reference Lists	 Theory: 1. Douglas, B.E. and McDaniel, D.H. Concepts & Models of Inorganic Chemistry Oxford, 1970. 2. Atkin, P. Shriver & Atkins' Inorganic Chemistry, 5th Ed., Oxford University Press (2010). 3. Cotton, F.A., Wilkinson, G. and Gaus, P.L., Basic Inorganic Chemistry 3rd Ed.; Wiley India. 4. Sharpe, A.G., Inorganic Chemistry, 4th Indian Reprint (Pearson Education) 2005. 5. Huheey, J. E.; Keiter, E.A. &Keiter, R.L. Inorganic Chemistry, Principles of Structure and Reactivity 4th Ed., Harper Collins 1993, Pearson,2006. 6. Mingos, D.M.P., Essential trends in inorganic chemistry. Oxford University Press (1998). 7. Winter, M. J., The Orbitron, http://winter.group.shef.ac.uk/orbitron/ (2002). An illustrated gallery of atomic and molecular orbitals. 8. Burgess, J., Ions in solution: basic principles of chemical interactions. Ellis Horwood (1999). 9. Pfennig, B. W. (2015), Principles of Inorganic Chemistry. John Wiley & Sons. 10. Housecraft, C. E.; Sharpe, A. G., (2018), Inorganic Chemistry, 5th Edition, Pearson. 11. Wulfsberg, G (2002), Inorganic Chemistry, Viva Books Private Limited. Practical: 1. Mendham, J., A. I. Vogel's Quantitative Chemical Analysis 6th Ed., Pearson, 2009. 2. Harris, D. C.; Lucy,C. A.(2016), Quantitative Chemical Analysis, 9th Edition, Freeman and Company

Evaluation	Theory: 100
	Internal: 30 (CIA:20, Other mode of
	Assesment:5, Attendance: 5)
	Semester Exam:70
Paper Structure for	For each group, there will be a compulsory section of 5 marks.
Theory Semester Exam	Also, THREE questions of 10 marks each should be attempted
	out of FOUR questions