Semester	3
Course	BSc Statistics Honours
Paper Code	C2ST230311T
Paper Title	Real Analysis I and Linear Algebra I
No. of Credits	4
Theory / Practical / Composite	Theory
Minimum No. of preparatory hours per week a student has to devote	4
Number of Modules	2
Syllabus	Module 1: Real Analysis 1 Unit 1: Real number system: Basic Ideas. Archimedean property. [3L] Sequences of real numbers: Definition, convergence, limit of a sequence. Bounded and monotone sequences. Cauchy sequences. Properties and applications.[7L] Series of real numbers: Definition, convergence. Tests of convergence (statement and applications) - Comparison, Limit comparison, Ratio, Root, Rabbe's, Cauchy Condensation, Logarithmic, Integral tests, Abel's and Dirichlet's tests. Absolute and conditional convergence of series. [4L] Unit 2: Limits of real valued functions: Definition, left hand and right hand limits. Infinite limits and limits at infinity. Sequential definition of limits. Properties of limits. Applications. [4L] Continuity of real valued functions: Definition, left hand and right hand continuity. Discontinuous functions. Sequential definition of continuity. Properties of continuous functions. Applications. Intermediate value property. [4L] Differentiability of real valued functions: Definition, properties. Chain rule. Rolle's theorem, Lagrange's mean value theorem. Applications. [4L]

	Module 2: linear algebra I Unit 1: Algebra of Matrices: A review - properties related to triangular, symmetric and skew-symmetric matrices, idempotent matrices, orthogonal matrices, singular and nonsingular matrices and their properties. Trace of a matrix. Adjoint and inverse of a matrix and related properties. Partitioning of matrices and simple properties. [8L] Unit 2: Determinants: Definition, properties, algebraic operations and evaluation of determinants using transformations. Product of determinants. Vandermonde determinants for nth order. Jacobi's Theorem. Unit 3: Ideas of vectors: Definition, unit vector, null vector, sum vector, linear combination of vectors, linearly independent vectors, orthogonal vectors, orthonormal vectors. GramSchimdt orthogonalization.
Learning Outcomes	To understand the definition of sequences and their properties. To apply different tests to evaluate convergence of series. To identify and verify properties of real valued functions. To understand concepts of matrix algebra and determinants. To learn the ideas of vectors.
Reading/Reference Lists	1. Bertle R. G., Sherbert D. R. (2011): Introduction to Real Analysis, $4^{\text {th }}$ Edition, Wiley \& Sons Inc. 2. Goldberg R. R. (2020): Methods of Real Analysis, Oxford \& IBH Publishing Co Pvt Ltd. 3. Ghorpade S. R., Limaye V. B. (2006): A Course in Calculus and Real Analysis, Springer Publications. 4. Khuri A. (2003) :Advanced Calculus with Applications in Statistics, $2^{\text {nd }}$ Edition, Wiley Interscience. 5. Rudin W. (2017): Principles of Mathematical Analysis, $3{ }^{\text {rd }}$ Edition, McGraw Hill Publication. 6. Hadley G. (2002): Linear Algebra. Narosa Publishing House (Reprint). 7. Mapa S. K. (2016): Higher Algebra: Abstract and Linear. Levant

	Books. 8. Narayan S. (2004): A Textbook of Matrices, S Chand \& Co Ltd. 9. Searle S. R. (1982): Matrix Algebra Useful for Statistics. John Wiley \& Sons.	
Evaluation	CIA: 30 End-Sem: 70 Total: 100	
Paper Structure for	Module-I (35 marks)	Module-II (35 marks)
Theory Semester Exam	To answer Short: 4 out of 6 (5 marks) Long: 1 out of 2 (15 marks)	To answer Short: 4 out of 6 (5 marks) Long: 1 out of 2 (15 marks)

