V
V Major 1
Enzyme Structure and Kinetics
C3BT230512T/P
4 (3+1)
Composite
4
2
MODULE A [20 Marks]
Unit-I: Enzymes from a structural perspective: Apo and holoenzyme; Cofactor and prosthetic groups; Zymogens and their activation (Proteases and Prothrombin); Structures and mechanisms of Serine proteases, Cystine Proteases, and Aspartic Proteases; Restriction endonucleases, Metalloenzyme (Carbonic anhydrase, MMPs), sensory kinases; Cooperativity and allosteric effects from the structural point of view - Aspartate transcarbamoylase (ATCase), Substrate-induced subunit remodeling in oligomeric proteins, AAA ⁺ ATPases; Enzyme regulations: Regulations by competitive and non-competitive inhibitors, Importance of different Transition-state analogs, feedback control, covalent modification, Abzymes. <i>(1 class per week)</i>
MODULE B [25 Marks]
Unit-II: Enzyme Kinetics
Reaction co-ordinate diagrams of uncatalyzed vs. enzyme-catalysed reaction; Binding Energy - its contribution to reaction specificity and catalysis; Enzyme Kinetics – derivation of Michaelis-Menten (MM) Equation, transformation of MM-equation to Lineweaver-Burk (LB) Equation, advantage of LB plot over MM-plot in determining V_{max} and K_M , Eadie-Hofstee Plot; Enzyme Inhibition – reversible inhibition kinetics (Competitive, Uncompetitive, Mixed) including modified LB equations and respective double reciprocal plots, irreversible inhibition and how irreversibly modified enzymes can help in active-site mapping by mass spectrometry, suicide or Mechanism-based inhibition; Bi-Bi reactions – single-displacement (ordered or random) and double- displacement reactions and their identification by kinetics or isotope exchange method; Lysozyme as a model enzyme to learn how structural and kinetic studies can help to decipher enzyme's mechanism of action;

	Directed Evolution of Enzymes	
	Unit-III: Structure-Funct	ion Relationships in Complex
	Enzymes	
	•	plex – substrate tunnelling; F_0F_1 ATPase
	- how proton-motive force drive	e e
		(2 classes per week)
	PRACTICAL	(2 etusses per week)
	IRACIICAL	
	fluorescence quenching data analog with enzyme (de calculations).3. Determination of activity (alkaline phosphatase from optimum conditions.	n constant (K_d) value from intrinsic a obtained upon binding of the substrate monstration experiment followed by and specific activity of an enzyme n calf-intestinal mucosa, CIAP) under V_{max} of CIAP, in the absence and AP.
Learning Outcomes	 Importance of thermody Structure-function relations Mechanism of actions of Kinetics of enzyme catainhibitors. Enzyme regulations and Significance of enzyme In practical module the 	ficance of enzymes in living systems. ynamics in enzyme catalysis. ionship of the enzymes. of a few model enzymes. alysis with special emphasis on enzyme d their physiological importance. as in industry and medicines. students will be given hands on wity/specific activity measurements.
Reading / Reference List	1. Lehninger Principles of	Biochemistry - Cox & Nelson
	2. Biochemistry - Voet an	·
	3. Biochemistry – Berg, T	
Evaluation	Theory CIA- 10 Assignment – 02 Attendance - 03 Semester Exam- 45	Practical CA- 30 Attendance - 02 Semester Exam- 08
Paper Structure for Theory Semester Exam	1 0	e-type Question of 6 marks ns; each of 7 marks, with subparts (not an 4)

	 Module B (25 Marks) 1 Compulsory Question of 10 marks with sub-parts (not less than 1, not more than 5) Any 1 out of 2 questions; each of 15 marks, with subparts (not less than 1, not more than 5)
--	--