

RESEARCHGATE:

ORCID:

GOOGLE SCHOLAR:

RAHUL SHARMA

Assistant Professor,
Department of Chemistry,
St. Xavier's College (Autonomous), Kolkata
30 Mother Teresa Sarani,
Kolkata – 700016, W.B.

Phone: 9831252673

Email: sharmamonty@gmail.com

rahulsharma@sxccal.edu

 $\frac{https://www.researchgate.net/profile/Rahul-Sharma-}{2}$

https://orcid.org/0000-0003-2999-1285

 $\frac{https://scholar.google.com/citations?hl=en\&user=fZ}{gbvjUAAAAJ}$

FIELD OF RESEARCH

Many problems of theoretical chemistry can be ultimately reduced to the equivalent problems of either maximizing or minimizing a function or a functional. For complex functions and functionals deterministic search for critical points is often not the best way when the surfaces being explored have a rather large number of critical points. Of late, a number of soft-computing methods that can do the job better have come up. Notable among these are the Simulated Annealing method (SAM), evolutionary algorithms (EA^s) like Genetic Algorithms, Ant Colony Algorithms, Swarm-Intelligence driven algorithms and the Neural Network. My focus has been towards exploring these algorithms, especially the hybrids of them, to handle the following problems:

- (1) Computing eigen-spectra of Hermitian matrices and to explore the various matrix partitioning schemes available, like the energy-dependent and the energy-independent wave operator formalism; to extract a small number of eigen-values and vectors for moderate size matrices.
- (2) Finding local and global minima and maxima on complex potential energy surfaces of atomic and molecular clusters, spin-clusters etc.
- (3) Finding 1st and 2nd order saddle points of the above-mentioned surfaces with a view to locating the transition structures.
- (4) Thermal effects on cluster geometry and other properties, especially response properties.
- (5) Constructing localized orbitals and optimizing basis functions.
- (6) Development of methodologies to scope out the reaction pathways for some simple problems.

Presently, I have done some work towards the solution of the reactive scattering problem for three body systems using the wave packet evolution (in hyperspherical co-ordinates); parallelization of the code using MPI, OpenMP and mixed MPI-OpenMP parallelization.

Special emphasis has been given on the fine-tuning of relevant parameters of each algorithm and parallelization of the methods proposed, so that they become competitive with the existing computing schemes.

LIST OF PUBLICATIONS:

Serial	Year of	Title	Name of the	Name of the Journal	Volume and
Number	Publication		authors		Pages
1	2021	Dynamical calculations of O (3	S Ghosh,	Physical Chemistry	Vol: 23,
		P)+ OH (2 Π) reaction on the	R Sharma,	Chemical Physics	Pg:21784-
		CHIPR potential energy surface	S Adhikari,	Ĭ	21796
		using the fully coupled time-	AJC Varandas		
		dependent wave-packet			
		approach in hyperspherical			
		coordinates			
2	2020	Structure elucidation and	K Ghosh,	Physical Chemistry	Vol: 22,
		construction of isomerisation	R Sharma,	Chemical Physics	Pg: 9616-
		pathways in small to moderate-	P Chaudhury		9629
		sized (6–27) MgO nanoclusters:			
		an adaptive mutation simulated			
		annealing based analysis with			
		quantum chemical calculations			
3	2019	Fully coupled (J> 0) time-	S Ghosh,	Physical Chemistry	Vol: 21,
		dependentwave-packet	R Sharma,	Chemical Physics	Pg: 20166-
		calculationsusing hyperspherical	S Adhikari,		20176
		coordinates for the H+ O 2	AJC Varandas		
		reaction on the CHIPR potential			
		energy surface			
4	2018	3D time-dependent wave-packet	S Ghosh,	Physical Chemistry	Vol: 20,
		approach in hyperspherical	R Sharma,	Chemical Physics	Pg: 478-488
		coordinates for the H+ O 2	S Adhikari,		
		reaction on the CHIPR and	AJC Varandas		
		DMBE IV potential energy			
		surfaces			
		S Ghosh, R Sharma, S Adhikari, AJC Varandas			
		Physical Chemistry Chemical Physics 20 (1), 478-488			
5	2017	Beyond Born-Oppenheimer	Sandip Ghosh,	The Journal of	Vol: 147,
3	2017	theory for ab initio constructed	Saikat Mukherjee,	Chemical Physics	Pg: 074105
		diabatic potential energy	Bijit Mukherjee,	Chemical I hysics	1 6. 07 1103
		surfaces of singlet H3+ to study	Souvik Mandal,		
		reaction dynamics using coupled	Rahul Sharma,		
		3D time-dependent wave-packet	Pinaki Chaudhury,		
		approach	Satrajit Adhikari		
6	2017	Coupled 3D time-dependent	S Ghosh,	Chemical Physics	Vol: 675,
		quantum wave-packet study of	R Sharma,	Letters	Pg: 85-91
		the O+ OH reaction in	S Adhikari,		<u> </u>
		hyperspherical coordinates on	AJC Varandas		
		the CHIPR potential energy			
		surface			
7	2015	Enhancing the branching ratios	S Talukder,	The Journal of	Vol:143
		in the dissociation channels for	S Sen,	Chemical Physics	Pg: 144109
		O16O16O18 molecule by	BK Shandilya,		
		designing optimum laser pulses:	Rahul Sharma,		
		A study using stochastic	P Chaudhury,		
		optimization	S Adhikari		
8	2015	Coupled 3D Time-dependent	S Ghosh,	The Journal of	Vol: 119,
		Wave-packet Approach	T Sahoo,	Physical Chemistry	Pg: 12392-

		inHyperspherical Coordinates: the D++ H2 Reaction on the Triple-sheeted DMBE Potential Energy Surface	S Adhikari, Rahul Sharma , AJC Varandas	A	12403
9	2015	Low-temperature D+ + H2 reaction: A time-dependent coupled wave-packet study in hyperspherical coordinates	Tapas Sahoo, Sandip Ghosh, Satrajit Adhikari, Rahul Sharma, António J. C. Varandas	The Journal of Chemical Physics	Vol: 142 Pg: 024304
10	2014	Coupled 3D Time-Dependent Wave-Packet Approach in Hyperspherical Coordinates: Application to the Adiabatic Singlet-State (11A') D++ H2 Reaction	T Sahoo, S Ghosh, S Adhikari, Rahul Sharma, AJC Varandas	The Journal of Physical Chemistry A	Vol:118 Pg:4837-4850
11	2014	A generalized recipe to construct elementary or multistep reaction paths via a stochastic formulation: Application to the conformational change in noble gas clusters	S Talukder, S Sen, Rahul Sharma, SK Banik, P Chaudhury	Chemical Physics	Vol:43 Pg:5-11
12	2014	A new adaptive mutation simulated annealing algorithm: application to the study of pure and mixed Pt–Pd clusters	SK Biring, Rahul Sharma, P Chaudhury	Journal of Mathematical Chemistry	Vol:52 Pg:368-397
13	2013	Structural and Infra Red Spectroscopic Aspects of Ion- Water Clusters: A Study Based on a Combined Stochastic and Quantum Chemical Approach	SK Biring, Rahul Sharma, R Misra, P Chaudhury	Journal of Cluster Science	Vol: 24 Pg: 1-23
14	2012	A constrained variational approach to the designing of low transport band gap materials: A multiobjective random mutation hill climbing method	K Sarkar, Rahul Sharma, SP Bhattacharyya	International Journal of Quantum Chemistry	Vol: 112 Pg: 1547- 1558
15	2011	A "classical" trajectory driven nuclear dynamics by a parallelized quantum-classical approach to a realistic model Hamiltonian of benzene radical cation	S Sardar, AK Paul, Rahul Sharma, S Adhikari	International Journal of Quantum Chemistry	Vol: 111 Pg: 2741- 2759
16	2011	Solving symmetric eigenvalue problem via genetic algorithms: Serial versus parallel implementation	S Nandy, Rahul Sharma, SP Bhattacharyya	Applied Soft Computing	Vol: 11 Pg: 3946- 3961
17	2011	A Density-Genetic Algorithm Method for Computing Electronic Structures of Doped and Undoped Polythiophene Oligomers: A Modified Su– Schrieffer–Heeger Hamiltonian- Based Study	Rahul Sharma, S Nandy, P Chaudhury, SP Bhattacharyya	Materials and Manufacturing Processes	Vol: 26 Pg: 354-362
18	2010	Blending determinism with	K Sarkar,	Journal of Chemical	Vol: 6

		evolutionary computing: Applications to the calculation of the molecular electronic structure of polythiophene	Rahul Sharma, SP Bhattacharyya	Theory and Computation	Pg: 718-726
19	2010	Exploring NLO response of 9, 10-donor-acceptor substituted Bichromophoric Anthracene Derivatives	R Misra, Rahul Sharma, SP Bhattacharyya	Journal of Computational Methods in Science and Engineering	Vol: 10 Pg: 149-164
20	2009	On optimal designing of low frequency polychromatic fields for facile photo-dissociation of model diatomic molecules	S Ghosh, K Maji, Rahul Sharma, SP Bhattacharyya	Journal of Chemical Sciences	Vol: 121 Pg: 757-766
21	2009	A search for lowest energy structures of ZnS quantum dots: Genetic algorithm tight-binding study	S Pal, Rahul Sharma, B Goswami, P Sarkar, SP Bhattacharyya	The Journal of Chemical Physics	Vol: 130 Pg: 214703
22	2009	The multistate multimode vibronic dynamics of benzene radical cation with a realistic model Hamiltonian using a parallelized algorithm of the quantumclassical approach	S Sardar, AK Paul, Rahul Sharma, S Adhikari	The Journal of Chemical Physics	Vol: 130 Pg: 144302
23	2009	Computation of molecular electronic structure by genetic algorithm	Rahul Sharma, R Saha, S Nandy, SP Bhattacharyya, P Chaudhury	Materials and Manufacturing Processes	Vol: 24 Pg: 155-161
24	2009	Theoretical prediction of ring structures for ZnS quantum dots	S Pal, Rahul Sharma, B Goswami, P Sarkar	Chemical Physics Letters	Vol: 467 Pg: 365-368
25	2008	On Solving Energy-Dependent Partitioned Real Symmetric Matrix Eigenvalue Problem by a Parallel Genetic Algorithm	Rahul Sharma, S Nandy, SP Bhattacharyya	Journal of Theoretical and Computational Chemistry	Vol: 7 Pg: 1103- 1120
26	2008	A density-matrix-based simulated annealing (SA) technique for locating minimum energy structures on the neutral polythiophene potential energy surface	S Nandy, P Chaudhury, Rahul Sharma, SP Bhattacharyya	Journal of Theoretical and Computational Chemistry	Vol: 7 Pg: 977-987
27	2007	Target excitation in 2-D quantum dots by optimized chirped pulses	M Ghosh, Rahul Sharma, SP Bhattacharyya	Chemical Physics Letters	Vol: 449 Pg: 165-170
28	2007	Direct search for wave operator by A Genetic Algorithm (GA): Route to few eigenvalues of a Hamiltonian	Rahul Sharma, SP Bhattacharyya	Proceedings of IEEE Congress on Evolutionary Computation, 2007. CEC 2007	Vol: Pg: 3812- 3817
29	2007	Instability and pattern formation in reaction-diffusion systems: A higher order analysis	SS Riaz, Rahul Sharma, SP Bhattacharyya, DS Ray	The Journal of Chemical Physics	Vol: 127 Pg: 064503
30	2006	On solving energy-dependent	Rahul Sharma,	Pramana	Vol: 66

	partitioned eigenvalue problem by genetic algorithm: The case of real symmetric Hamiltonian	•	Pg: 1130	1125-
	matrices			