Deep Learning

Course Outcome:

- 1. Understand the drawbacks of traditional machine learning methods and recognize the need for deep learning in solving complex problems.
- 2. Explain the evolution of artificial intelligence from the spring to winter phases and understand the biological inspiration behind deep learning models.
- 3. Analyze the functioning of McCulloch Pitts Neuron and Perceptron in building the foundation of artificial neural networks.
- 4. Utilize the power of a network of Perceptrons and Sigmoid neurons in solving classification and regression problems.
- 5. Demonstrate the learning parameters and backpropagation algorithm in feedforward neural networks for optimizing the model performance.
- 6. Implement various optimizers such as gradient descent and its variations for training deep neural networks efficiently.
- 7. Compare and contrast train error versus test error to avoid overfitting, and apply techniques like dataset augmentation, early stopping, dropout, and batch normalization.
- 8. Evaluate the convolution and pooling operations in Convolutional Neural Networks (CNN) for image classification tasks.
- 9. Illustrate the backpropagation process in CNN and review successful applications on the ImageNet dataset.
- 10. Apply transfer learning techniques to leverage pre-trained models for building efficient deep learning solutions.
- 11. Understand the concept of Recurrent Neural Networks (RNN) and Long Short Term Memory (LSTM) networks for sequence modeling tasks.
- 12. Identify and address the issues like vanishing gradient and exploding gradient in RNN for better performance.
- 13. Implement Generative Adversarial Networks (GAN) for generating realistic data and explore key terminologies such as Large Language Model (LLM) and Embeddings.
- 14. Develop applications in Generative AI using techniques like fine-tuning and prompt engineering.
- 15. Apply deep learning algorithms in real-world applications such as computer vision and natural language processing for solving practical problems.

