Semester	ONE	
Paper Number	2	
Paper Code	MDTS 4112	
Paper Title	Probability	
No. of Credits	6	
Course description	CORE	
	Composite Paper	
	One Module. Applications Using R	
	No. of classes assigned Theory: 4 classes per week	
	Practical: 3 classes per week	
Course Objective	At the end of the course, the students are expected to have	
	• Knowledge of basic ideas of Probability.	
	• Knowledge of different types of random variables and their probability distributions.	
	 Knowledge of different discrete and continuous standard theoretical distribution and their uses in modelling data through R. 	
	 Construction of Mixed distributions and their uses modelling data through R. Basic knowledge of prior and posterior distributions. 	
	• Basic knowledge of prior and posterior distributions.	
Syllabus	Introduction to Probability: random experiments, sample space, events and algebra of events.	
	Definitions of Probability – classical, statistical and axiomatic. [5]	
	Conditional Dash shill to The second standard hability the second for the second shill to Describe second	
	Conditional Probability: Theorem of compound probability, theorem of total probability, Bayestheorem and its applications, independent events. [4]	
	and its applications, independent events. [4]	
	Random variables and their probability distributions: PMF, PDF and CDF, statement of properties of	
	CDF,Empirical distribution functions and their properties, illustrations and properties of random variables.	
	Moments. Joint, marginal and conditional probability distributions, Joint PMF, PDF and CDF, statement of	
	properties of Joint CDF, independence of variables. Markov's and Chebyshev's inequalities. Mixed random	
	variables. Construction of probability distributions of mixed random variables. [12]	
	General Hubbarrista Discosta Theoretical Distributions Discostal Deisson according to the starting to	
	Standard Univariate Discrete Theoretical Distributions: Binomial, Poisson, geometric, negativebinomial, hypergeometric, uniform (Genesis, Statement of properties and applications).	
	[8]	
	[0]	
	Standard Univariate Continuous Theoretical Distributions: Rectangular, normal, exponential, Cauchy, beta,	
	gamma, lognormal, logistic, double exponential and Pareto (Genesis, Statement of properties and applications).	
	[10]	

	Bivariate Normal Distribution (Genesis, Statement of properties and applications). [4] Truncated Distributions. [5]		
Practical	Based on the theory topics		
Reading/Reference Lists	 Ronald E. Walpole; Raymond H. Myers; Sharon L. Myers; Keying E. Ye <i>Probability and Statisticsfor</i> <i>Engineers and Scientists</i>, by Pearson, Ninth Edition (2013). Sheldon Ross <i>A First Course in Probability</i>, Pearson, Ninth Edition (2018). Prabhanjan N. Tattar, Suresh Ramaiah, B. G. Manjunath, <i>A Course in Statistics with R</i>; Wiley,(2018). 		
Evaluation	3. Prabhanjan N. Tattar, Suresh Ramaiah, B. G. Man Theory CIA: 10 End Sem Exam: 50 Total : 60	Practical Continuous Assessment: 30 End Sem Viva: 10 Total: 40	
Paper Structure for End Semester Theory	Short questions: 5 marks each	Long questions: 10 marks each	
	2 out of 4	4 out of 6	