Semester	ONE			
Paper Number	3			
Paper Code	MDTS 4113			
Paper Title	Linear Algebra and Elements of Statistical Inference			
No. of Credits	6			
Course description	CORE			
	Composite Paper			
	Module 1: 2 classes/week			
	Module 2: 2classes/week			
	No. of classes assigned Theory: 4 classes per week			
	Practical: 4 classes per week			
Course Objective	After completion of the course a student is expected to have an idea of			
	• Matrix algebra and determinants.			
	• Vector spaces, subspaces, their dimensions and basis.			
	• Projection of vectors, orthogonalisation, systems of linear equations, different factorization techniques.			
	• Characteristic roots and vectors along with the understanding of classification of quadratic forms.			
	• Applications on least squares and dimension reduction.			
	• This course is a pre requisite to the courses like Multivariate and Machine learning etc.			
	• Understand the concept of an iid sample.			
	 Conceptualise drawing samples from theoretical distributions. 			
	• Conceptualise level, size, power of a test and the errors associated with a testing problem.			
	• Applying the results of sampling distributions to build test statistics and critical regions.			
	• Construct confidence intervals for parameters and develop their relation with testing of hypotheses.			

Syllabus				
	Module1: Linear Algebra			
	Unit 1: Vectors – Concept of a vector, length of a vector, Angle between two vectors, Orthogonal and orthonormal vectors, Linear dependence and independence of vectors, Vector spaces, Spanning set of a vector space, Basis of a vector space, Dimension of a vector space, Projection of a vector on a vector space, Orthogonal Basis, Orthocomplement of a vector space, Gram-Schmidt orthogonalization procedure, Row space & column space of a matrix.			
	Matrices (as a vector of vectors), Square matrices, Matrix operations (Addition, subtraction, multiplicationby a scalar and by a matrix, Kronecker Product), Null matrix, Identity matrix, symmetric and skew symmetric matrices, orthogonal matrices, Rank of a matrix, singular and non-singular matrices, A few important results on the rank of a matrix, Inverse of a matrix, idempotent matrices, Elementary Transformations on a matrix, Reduction of a matrix to echelon, and diagonal forms by elementary transformations, Trace of a matrix, Partitioning of matrices and simple properties. [11]			
	Unit2: Direct and iterative methods for solving a linear system of equations: Gaussian elimination, LU factorization, QR factorization, Cholesky method, Jacobi's method, Gauss-Seidel method. [5]			
	Characteristic roots and Characteristic vector, Properties, Spectral Decomposition, Singular value decomposition. [5]			
	Quadratic forms: Classification & canonical reduction. [3]			

	Module 2 : Elements of Statistical Inference				
	Unit 3: Sampling Distributions Basic Concepts: Concept of an iid sample, Statistic and its standard error. Drawing of random samples fromtheoretical distributions. Illustrations with R. (3) Techniques of Sampling Distributions: Distribution Function, Moment Generating Function and Transformation of variables technique to obtain sampling distribution of statistics				
	<i>Distributions from Univariate Normal Distributions:</i> Chi-square, t and F. Degrees offreedom. Sampling Distributions of sample mean, sample variance, their independence, linear combinations of normal variables. Definitions of Non-central chi-square, t and F distributions. Illustrations through simulations. (5)				
	Basic Sampling Distributions from Bivariate Normal Distributions: Sampling distributions of samplecorrelationcoefficient and linear regression coefficients. Illustrations through simulations.(2)				
	Unit 4: Elements of Inference Problems Problems and Paradigms of Inference: Estimation and Testing of Hypotheses Problems. Parametric andNonparametric Inference. Classical and Bayesian Inference. (3) Estimation: Basic Criteria of a good estimator – Sufficiency, Unbiasedness, Minimum Variance, Consistency and Efficiency. OPEF. (4) Interval Estimation: Methods of finding confidence intervals. Shortest confidence intervals. Confidence belts.(3)				
	Testing of Hypothesis: Null and Alternative Hypothesis. Simple and Composite Hypothesis. Type-1 and Type-2 Errors. L				
	and Power of a Test. Power Function. p-value of a test. p-hacking. Application to tests of significance. [4]				
List of Practical	Based on the theory topics				

Reading/Reference Lists	1.	Stephen Boyd and Lieven Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares (Cambridge University Press, 3rd edition)		
	2.	Lloyd N. Trefethen and David Bau, III: Numerical linear algebra, SIAM (1997)		
	3.	Matrix Algebra: Theory, Computations and Applications in Statistics by J.E. Gentle, Springer, 2007		
	4.	 Fundamentals of Matrix Computations by D.S. Watkins, 2nd ed., Wiley, Net York, 2002. 		
	 Gilbert Strang; Linear Algebra and its Applications; Acad Edition. 			
	 Goon A.M., Gupta M.K., Das Gupta.B.: Fundamentals of Statistics, Vol. 1, World Press 2010 			
	7.	 Goon, A.M. Gupta, M.K. and Dasgupta, B. : An outline of Statistical Theory, Vol. 1, World Press, 2010. Ismay, C. and Kim, A.Y., Statistical Inference via Data Science, A Modern Dive into R and the Tidyverse, CRC Press Talor and Francis group, 2020. Moulin, P. and Venugopal, V.V., Statistical Inference for Engineers and 		
	8.			
	9.			
	10	Data Scientists, CambridgeU	niversity Press.	
Evaluation	Theory	. Carlo, D., Statistical Inference	Practical	
	CIA: 10)	Continuous Assessment: 30	
	End Sem Exam: $50(25+25)$		End Sem Viva: 10	
	Total :	60	Total: 40	
Paper Structure for End Semester Theory	Short questions: 5 marks each		Long questions: 10 marks each	
Module I	1 out of 2		2 out of 3	
Module II	1 out of 2		2 out of 3	