Semester	THREE		
Paper Number	10		
Paper Code	MDTS 4312		
Paper Title	Machine learning		
No. of Credits	6		
Course description	CORE		
	Composite Paper		
	Module 1: 2 classes/week		
	Module 2: 2 classes/week		
	No. of classes assigned Theory: 4 classes per week Practical: 3 classes per week		
Course Objective	At the end of the course, the students should be able to		
	Understand the difference between supervised and unsupervised learning. Understand		
	the problems arising with high-dimensional data.		
	Apply the different dimension reduction techniques to machine learning problems.		
	Apply clustering algorithms to machine learning problems.		
	To understand the association rules.		
	Apply different classifiers to machine learning problems.		
Syllabus	Module 1: Unsupervised Learning		
	Clustering algorithms: Combinatorial algorithm, mixture modeling, and mode seekers. [8]		
	Applications of dimension reduction techniques in machine learning problems. Principal component, independent component, and factor analysis. [10]		
	Page rank algorithm used by Google search engine. [2]		
	High dimensional data and curse of dimensionality. [4]		
	Module 2: Supervised Learning		
	Learning from association: Association rules. Market basket analysis. Generalized association rules. [4]		
	Support vector: maximal margin classifier, support vector classifier, support vector machines, support vector regression. [10]		
	Tree-based methods: Bagging, random forest, boosting, and additive trees. [8]		
	ML on Cloud: Introduction, Characteristics, Cloud Delivery Models, Cloud Deployment Models, Cloud platforms, Case study on AWS Services, Model Deployment using Flask on AWS. [6]		

Practical	Based on Theory topics		
Reading/Reference Lists	An Introduction to Statistical learning with applications in R. James G, Witten, D, Hastie T and Tibshirani R.		
	Foundations of Machine Learning. M Mohori, A Rostamizadeh and A Talwalkar.		
	Hastie, Tibshirani, Friedman: <i>The Elements of Statistical Learning, Data Mining, Inference and Prediction</i> . Second Edition, Springer Series in Statistics.		
	Introduction to Computation and Programming using Python with Applications to Understanding Data, second edition, John V. Guttag		
	Introduction to Data Science: data analysis and Prediction algorithms with R. Rafael A. Irizarry.		
Evaluation	Theory	Practical	
	CIA: 10	Continuous Assessment	
	End Sem Exam: 50 (25+25)	Total: 40	
	Total: 60		
Paper Structure for End Semester Theory	Short questions: 5 marks each	Long questions: 10 marks each	
Module I	1 out of 2	2 out of 3	
Module II	1 out of 2	2 out of 3	