Semester	THREE		
Paper Number	12		
Paper Code	MDTS 4314		
Paper Title	Time Series		
No. of Credits	6		
Course description	DSE		
	Composite Paper		
	One Module. Applications Using R No. of classes assigned Theory: 4		
	classes per weekPractical: 3 classes		
	per week		
Course Objective	Course Outcome:		
	To identify the appropriate time series model for a given data series		
	To smooth a time series using classical and exponential smoothing techniques		
	To model the process mean using the Boss Jenkins technique		
	To forecast future values		
	 To evaluate the accuracy of predictions using various metrics 		
	 To model the variability in a time series using ARCH-GARCH models 		
	To predict model volatility		
	To model structural breaks in time series		
	 To set up latent time series models through state space modeling To analyze time series using the frequency domain approach 		
	Unit 1: Univariate time series modelling and forecasting:		
Syllabus			
	Different components of a time series. Analysis of trend and seasonality. Exponential smoothing.		
	Stationarity. The autocorrelation and partial autocorrelation functions. Moving Average, Autoregressive, and Autoregressive Moving Average processes. ARIMA and SARIMA models.		
	Dickey-Fuller and Augmented Dickey Fuller tests for unit roots. Tests for Randomness.		
	Building the ARIMA model: the BoxJenkins approach. (18)		
	Unit 2: Modelling volatility		
	Models for volatility, Autoregressive conditionally heteroscedastic (ARCH) model, Generalised ARCH (GARCH) models, Variants of the GARCH model.		
	Estimation of ARCH/GARCH models, Building the ARCH/GARCH model. Volatility forecasting. (12)		
	Unit 3: Switching models, State Space Models and Frequency Domain Analysis		
	Piecewise Linear Models, Markov switching models, Threshold autoregressive models: estimation and specification tests.		
	State Space Models and its estimation. Kalman Filtering.		
	Analysis in the Frequency Domain: Spectral density function. Periodogram Analysis. (18)		

List of Practical	Based on the theory Topics		
Reading/Reference Lists	1.C. Chatfield: The Analysis of Time Series – An Introduction 2.G.E.P. Box, G.M. Jenkins &G.C.Reinsel: Time Series Analysis – Forecasting & Control 3.P.J. Brockwell & R.A. Davis: Introduction to Time Series Analysis and Forecasting 4.A.Pankratz: Forecasting with Univariate Box-Jenkins Model 5.G. Janacek and L. Swift: Time Series –Forecasting, Simulation, Application 6. R.H. Shumway & D.S. Stoffer: Time Series Analysis and its Applications 7.Chris Brooks: Introductory Econometrics for Finance 8. C. Gourieroux & A. Monfort: Time Series and Dynamic Models		
Evaluation	Theory CIA: 10 End Sem Exam: 50 Total: 60	Practical Continuous Assessment: 30 End Sem Viva: 10 Total: 40	
Paper Structure for End Semester Theory	Short questions: 5 marks each 2 out of 4	Long questions: 10 marks each 4 out of 6	