Semester	FOUR		
Paper Number	15		
Paper Code	MDTS 4413		
Paper Title	Deep Learning		
No. of Credits	6		
Course Description	DISCIPLINE SPECIFIC ELECTIVE		
	Composite Paper		
	One Module		
	No. of classes assigned Theory: 4 classes per week Practical: 3 classes per week		
Course Objective	rse Objective At the end of the course, the students should be able to,		
	(1) Appreciate the need of deep learning over machine learning		
	(2) Understand the working of neural networks		
	(3) Gain an in-depth knowledge of the methods to prevent overfitting of deep neural networks		
	(4) Grasp advanced deep learning algorithms, such as convolutional neural network and recurrent neural network		
	(5) Implement deep learning models from scratch by writing computer programs		
Syllabus	Introduction to Deep Learning (DL): Drawbacks of machine learning; From Spring to Winter of AI; Biological inspiration; McCulloch Pitts Neuron; The Perceptron; Power of a network of Perceptrons; The Sigmoid Neuron; Power of a network of Sigmoid neurons (4)		
	Feedforward Neural Networks:Learning parameters;Backpropagation (BP);Gradient calculation:output units, hidden units, parameters(6)		
	Training deep neural networks: Optimizers: gradient descent and its variations; Train error v/s test error; Dataset augmentation; Early stopping; Dropout; Initialization strategies; Batch Normalization; More activation functions (15)		
	Convolutional Neural Networks (CNN): The convolution operation: kernel, padding,stride; The pooling operation: max pooling, average pooling; BP in CNN; Successstories on the ImageNet dataset; Transfer learning(10)		
	Sequence Modelling: Recurrent Neural Network (RNN); Types of RNN; Drawbacks of RNN: vanishing gradient and exploding gradient; BP through time; Long Short Term Memory Network (10)		
	Applications: Computer Vision, Natural Language Processing(7)		
List of Practical	Implementing case studies on the topics taught in theory classes using Python		
Reading/Reference Lists	 Goodfellow, I, Bengio, Y, and Courville, A (2016): Deep Learning. MIT Press Josh Patterson, Adam Gibson "Deep Learning: A Practitioner's Approach", O'Reilly Media, 2017 		
	 Francois Chollet "Deep Learning with Python", Manning Publications, 2017. Nikhil Buduma and Nicholas Locascio. 2017. Fundamentals of Deep Learning: Designing Next-Generation Machine Intelligence Algorithms (1st. ed.). O'Reilly Media, Inc. 		

Evaluation	Theory Continuous Internal Assessment: 10 End semester exam: 50 Total: 60	Practical Continuous Assessment: 30 End semester viva voce: 10 Total: 40
Paper structure for end semester theory	Short questions: 5 marks each	Long questions: 10 marks each
	2 out of 4	4 out of 6