Semester	FOUR	
Paper Number	15	
Paper Code	MDTS 4413	
Paper Title	Deep Learning	
No. of Credits	6	
Course Description DISCIPLINE SPECIFIC ELECTIVE		
	Composite Paper One Module	
	No. of classes assigned Theory: 4 classes per week Practical: 3 classes per week	
Course Objective	At the end of the course, the students should be able to,	
	(1) Appreciate the need of deep learning over machine learning	
	(2) Understand the working of neural networks	
	(3) Gain an in-depth knowledge of the methods to prevent overfitting of deep neural networks	
	(4) Grasp advanced deep learning algorithms, such as convolutional neural network and recurrent neural network	
	(5) Implement deep learning models from scratch by writing computer programs	
Syllabus	Introduction to Deep Learning (DL): Drawbacks of machine learning; From Spring to Winter of AI; Biological inspiration; McCulloch Pitts Neuron; The Perceptron; Power of a network of Perceptrons; The Sigmoid Neuron; Power of a network of Sigmoid neurons. (6)	
	Feed forward Neural Networks: Learning parameters; Back propagation (BP); Gradient calculation: output units, hidden units, parameters. (4)	
	Training deep neural networks: Optimizers: gradient descent and its variations; Train error v/s test error; Dataset augmentation; Early stopping; Dropout; Initialization strategies; Batch Normalization; More activation functions. (10)	
	Convolutional Neural Networks (CNN): The convolution operation: kernel, padding, stride; The pooling operation: max pooling, average pooling; BP in CNN; Success stories on the ImageNet dataset; Transfer learning. (10)	
	Sequence Modelling: Recurrent Neural Network (RNN); Types of RNN; Drawbacks of RNN: vanishing gradient and exploding gradient; BP through time; Long Short Term Memory Network. (10)	
	Generative AI: Generative Adversarial Network (GAN), Key terminologies (Large Language Model (LLM), Prompt Engineering, Embeddings, Fine tuning), Building GEN AI applications. (6)	
	Applications: Computer Vision, Natural Language Processing. (6)	
List of Practical	Implementing case studies on the topics taught in theory classes using Python	

Reading/Reference	erence 1. Goodfellow, I, Bengio, Y, and Courville, A (2016): Deep Learning. MIT Press		
	2. Josh Patterson, Adam Gibson "Deep Learning: A Practitioner's Approach",		
	O'Reilly Media, 2017		
	3. Francois Chollet "Deep Learning with Python", Manning Publications, 2017.		
	4. Nikhil Buduma and Nicholas Locascio. 2017. Fundamentals of Deep Learning:		
	Designing Next-Generation Machine Intelligence Algorithms (1st. ed.). O'Reilly		
	Media, Inc.		
Evaluation	Theory	Practical	
	Continuous Internal Assessment: 10	Continuous Assessment	
	End semester exam: 50	Total: 40	
	Total: 60		
	Total. 00		
Paper structure for	Short questions: 5 marks each	Long questions: 10 marks each	
end semester			
theory			
	2 out of 4	4 out of 6	