| Semester                       | VI                                                                                                                                                                                                                                        |  |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Course                         | Minor                                                                                                                                                                                                                                     |  |
| Paper Code                     |                                                                                                                                                                                                                                           |  |
| Paper Title                    | Waves and Optics & Minor Lab 1                                                                                                                                                                                                            |  |
| No. of Credits                 | 4 (3+1)                                                                                                                                                                                                                                   |  |
| Theory / Practical / Composite | Composite                                                                                                                                                                                                                                 |  |
| Minimum No. of preparatory     | 5                                                                                                                                                                                                                                         |  |
| hours per week a student has   |                                                                                                                                                                                                                                           |  |
| to devote                      |                                                                                                                                                                                                                                           |  |
| Number of Modules              | 2                                                                                                                                                                                                                                         |  |
| Syllabus                       | Module A: Waves & Optics [36 L]                                                                                                                                                                                                           |  |
|                                | <b>Waves</b> : Superposition of parallel and perpendicular simple harmonic motions, Lissajous figures.                                                                                                                                    |  |
|                                | Damped Vibration, Forced Vibration (Solution of the equation of motion, Energy resonance)                                                                                                                                                 |  |
|                                | One dimensional plane progressive wave, Energy and Intensity of plane wave.                                                                                                                                                               |  |
|                                | [12 Lectures]                                                                                                                                                                                                                             |  |
|                                | Optics: Fermat's principle and its application to reflection and refraction at plane surfaces. Matrix Methods-Reflection, refraction, translation matrices (derivation), Refraction at thin lens  [6 Lectures]                            |  |
|                                | Interference: Young's double slit experiment, concept of spatial and temporal coherence, Stokes relations, Thin films, Newton's rings.  [6 Lectures]                                                                                      |  |
|                                | Diffraction – Fraunhofer single slit diffraction, Double slit diffraction, Plane transmission grating (no derivation), Rayleigh's criterion, Resolving power of grating.  [6 Lectures]                                                    |  |
|                                | Polarization – Transverse nature of light, States of polarization, Brewster's law, Concept of double refraction, Ordinary ray and extraordinary ray, Optical activity, Polarimeter (biquartz) (qualitative discussion only)  [6 Lectures] |  |
|                                |                                                                                                                                                                                                                                           |  |

### Module B: Lab I (24L)

- 1. Photo-electric effect: photo current versus intensity and wavelength of light; maximum energy of photo-electron versus frequency of light
- 2. To determine the Planck's constant using LEDs of four different colours.
- 3. Determination of the moment of inertia of a cylinder about an axis passing through its centre of gravity and perpendicular to its length using a cylinder as an auxiliary body and comparison with the theoretical value.
- 4. Determination of the Young's modulus of the material of the given uniform bar supported at two ends and loaded at the centre.
- 5. Determination of the modulus of rigidity of the material of a given wire by dynamical method.
- 6. Determination of the surface tension of water by capillary rise method.
- 7.Determination of the coefficient of viscosity of water by Poiseuille's method.
- 8.Determination of the focal length of a given concave lens combination method.
- 9. Determination of the refractive index of a liquid and that of the material of the convex lens by using the lens and a plane mirror.
- 10.Determination of the wavelength of a monochromatic light by Newton's ring method.
- 11. Calibration of a given polarimeter and determination of the specific rotation of sugar solution.

## **Learning Outcomes**

#### Module A

- 1. Students learn about the superposition of SHMs and how Lissajous figures are formed.
- 2. Exposure to the analysis of damped and forced vibration enables the students to understand these phenomena.
- 3. Students learn to set up the equation of motion for a plane progressive wave and how to calculate the energy and intensity associated with it.
- 4. The students learn how to apply Fermat's principle to obtain the laws of reflection and refraction

- 5. The students are introduced to the matrix method for paraxial optics which they can apply to simple cases
  - 6. Interference by division of wavefront, the concepts of temporal and spatial coherence are understood through the Young's double slit experiment
  - 7. Interference by division of amplitude is introduced through the understanding of thin films
  - 8. Students understand the phenomenon of diffraction and its application in plane transmission grating to resolve wavelengths
- 9. Students will be familiar with polarisation of light, optical activity and qualitatively understand the working of a polarimeter

#### Module B

- 1. A student is able to understand the particle nature of radiant energy and verify Einstein's equation on photoelectric effect. and determine Planck's constant by studying I-V characteristics of LEDs.
- 2. Students can understand the idea of rotational motion through simple experiments and calculate moment of inertia for bodies of definite geometrical shapes.
- 3. Measuring different modulus of elasticity by simple techniques and understanding the concepts of stress and strain.
- 4. Experiments on measuring coefficient of viscosity and surface tension effects help the students to understand these properties of a liquid.
- 5. Experiment on optics helps a student in understanding the phenomena of refraction, interference and polarisation,

# Reading/Reference Lists

## Module A References:

- (1) Advanced Acoustics, D.P. RayChaudhuri, The New Book Stall
- (2) A Handbook of Degree Physics, C.R. Dasgupta, Book Syndicate Pvt. Ltd.
- (3) Optics, Ajoy Ghatak, McGraw Hill Education

### Module B References:

- 1. A textbook on Practical Physics, K.G. Mazumdar & B. Ghol Sreedhar Publishers
- Advanced Practical Physics Vol 1. B. Ghosh & K Mazumdar, Sreedhar Publishers
- 3.Advanced Practical Physics Vol 2. B. Ghosh , Sreedle Publishers

|                                             | 4.An Advanced Course in Practical Physics, D. Chattopadhy, P.C. Rakshit, New Central Book Agency Pvt. Ltd. |                                 |
|---------------------------------------------|------------------------------------------------------------------------------------------------------------|---------------------------------|
| Evaluation                                  | Theory: 60<br>Th CIA: 15                                                                                   | Practical 40<br>CA 38 + 2 Attn. |
|                                             | SEM Exam: 45                                                                                               |                                 |
| Paper Structure for<br>Theory Semester Exam | (5/7) * 3 Marks each + (3/4) * 10 Marks each<br>Marks: 45                                                  |                                 |