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Message from the
Principal

Rev. Dr. Dominic Savio, SJ
Principal

St. Xavier’s College (Autonomous), Kolkata 

“I am pleased to learn that the Department of
Statistics of our college is successfully publishing the 15th
edition of its annual departmental magazine, “PRAKARSHO”.

Since its initiation, the magazine has served as a
platform for budding statisticians and data scientists to
showcase their passion and genius in the form of articles that
are published in it. With the addition of the postgraduation in
Data Science, the merit of the magazine only grows stronger.

My heartiest congratulations to all faculty members
and students, and I wish them the best for this issue as well as
for their future ventures. God Bless you all! Nihil Ultra!”

Principal



Message from the
Vice-Principal

Prof. Bertram Da’Silva
Vice-Principal, Arts & Science

St. Xavier’s College (Autonomous), Kolkata 

“Like every year, this time again the Department of
Statistics St. Xavier’s College(Autonomous), Kolkata has
proved its role in the development of research and innovation
by showcasing its commitment and fervour in the latest edition
of its magazine, PRAKARSHO Vol XV.

Always striving for excellence, it brings forward
riveting statistical and data-related ideas from the students as
well as renowned personalities. Their hard work and zeal
towards the betterment of the globe with academic
persistence is truly commendable.

My heartiest congratulations to all faculty members
and students. I wish them success.”

Vice Principal



Message from the
Dean of Science
Dr. Tapati Dutta
Dean of Science

St. Xavier’s College (Autonomous), Kolkata

“The Department of Statistics of St. Xavier’s
College(Autonomous), Kolkata, being an integral part of the
college has filled me with extensive pride with the publication
of the 15th edition of its annual departmental magazine
PRAKARSHO.

The students and the faculty members continue to
bring forward the best of both worlds, i.e., Statistics and Data
Science and have once again showcased the strive for
excellence of the department. I would like to extend my
sincere congratulations to the faculty members, the editorial
committee and the students.

It is gratifying to see yet another batch preserving
the legacy of the esteemed department by stepping outside
the bounds of curriculum in search of knowledge and I feel
assured of the success of PRAKARSHO XV. Good luck!”

Dean of Science



Message from the
Head ,  Department of Statistics

Dr. Durba Bhattacharya
Head, Department of Statistics

St. Xavier’s College (Autonomous), Kolkata

“It is indeed a very satisfactory and proud moment for us
to see our students successfully bring out the 15th edition of the
Departmental Magazine, PRAKARSHO. Yet again, we have been
able to reflect the spirit of our department in the magazine, which
would not have been possible without the relentless determination
and untiring efforts of the students.

I would like to extend my heartfelt gratitude to Father
Principal, Vice-Principal, Dean of Science and Dean of Arts for their
perennial guidance and encouragement. Sincere thanks goes to the
Programme and Publication Committee, for their support. I wish to
applaud the Student Editorial Board and the Publication Committee
for the hard work, enthusiasm and devotion with which they have
overcome all the challenges to make this issue a reality.

My sincere thanks and appreciation go to my colleagues,
whose dedication and efforts as a team has helped us come
together to unveil yet another achievement of our department.”

Head of the Department



Message from the
Editor’s Desk

“With time, we are realizing the significance of
being able to predict the future. We, as statisticians or data
scientists, are responsible for extracting the knowledge out of
the pre-existing and continuously occurring events. But with
growing diversity in the universe and fast changing world, it is
difficult to use all conventional processes of analysis. We are,
definitely, in need of modern research and research
methodologies to cope up with the challenges coming. And in
no way this magazine is an exception from seeking the help of
new research from young minds.

Even during the pandemic our magazine did not stop
from its responsibility of delivering modern thoughts from the
new-age learners. After battling with the deadly virus for
more than a couple of years, it is our immense pleasure to
bring to you the fifteenth edition of our generational platform
of research, thinking, applications and exchange of
knowledge, the PRAKARSHO, 2023.

Nihil Ultra!

Editor-in-Chief
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Departmental Report
2022-2023

Departmental Activities

Ø Epsilon Delta 2022
The Department organized its annual departmental event,
Epsilon Delta on 14th March, 2022 on the virtual platform MS
Teams. The program commenced with the launch of the 14th

edition of the Departmental Magazine ‘Prakarsho’. The
department organized ‘PROECTURA’ – an inter- college paper
presentation event where students from colleges all over India
participated and presented their research papers and ideas.
This event was followed by the events ‘X-QUIZZIT’ and
‘CHECKMATE’. The event concluded with a short cultural
presentation, performed and compiled by the students of the
Department of Statistics. Over 200+ students virtually
attended the event.



Departmental Report
2022-2023

Departmental Activities

Ø Inauguration of Data Science Lab
After completing more than sixty glorious years of
undergraduate teaching, the Department of Statistics has
started offering MSc in Data Science from the academic year
2022-23. The Data Science Laboratory was inaugurated on 4th

July 2022.



Departmental Report
2022-2023

Departmental Activities

Ø Webinar on “Artificial Intelligence in Healthcare”
Dr. Shibasish Dasgupta, Associate Director of Quantitative
Data Science, Pfizer, Adjunct Professor in Statistics and Data
Science, Chennai Mathematical Institute (CMI), was the invited
speaker of the day who presented an enlightening and
informative talk on ‘Artificial Intelligence in Healthcare’.



Departmental Report
2022-2023

Departmental Activities

Ø Talks
Prof. Bikas Kumar Sinha, Retired
Professor, Indian Statistical
Institute delivered an invited talk
on “FANCY LIFE OF A SMART
GAMBLER” and “OH CAPTAIN!
MY CAPTAIN” and “RIFLE
INSPECTION PROBLEM: EASIER
TO STATE (THE
ISSUE) THAN TO RESOLVE (THE
SAME)” on 13th September,2022.



Departmental Report
2022-2023

Departmental Activities

Ø Talks
Prof. Soutir Bandyopadhyay, Director of Graduate Studies,
Department of Applied Mathematics and Statistics, Colorado
School of Mines, delivered an invited talk on “Wendland Meets
Markov: Kriging For Large Spatial Data” on 15 th July,2022.
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SMART INVENTORY MANAGEMENT
USING COMPUTER VISION

Somedip Karmakar,	
Staff	Data	Scientist,	

Walmart	Global	TechIndia

v Abstract:
In any retail business, it is very important that the customers are able to find the
required items on the shelf. Out-of-stock scenarios can be a major cause of
customer walk-offs. It is a critical part of assortment and replenishment domains
to ensure that products are always available, and proactively determine
situations of out-of-stock even before it happens, so that the items can be
restocked. However, for very large stores with millions of items, it becomes very
difficult to manually keep track of all the items on the shelf, and hence a
computer vision-based solution can automate the task of determination of
potential out-of-stock and an integrated system can be developed to replenish
the items from the back room or raise alerts to the replenishment managers to
deliver the next batch of products. The process can also be utilized to identify
cases where wrong items are placed on the shelf, leading to the unavailability
of the products, and thereby reducing shrinkage. The store shelf images,
gathered from shelf-scanning robots, drones and cameras are stitched together
to get a view of the current status of shelf inventory, and the planogram
provides information on the actual number of items required to be present. We
have discussed an innovative use of image augmentation, unsupervised image
processing and semi-supervised deep learning-based localized void detection
algorithm to overcome the challenges of the requirement of labelled data.

The algorithm can detect actual voids and partial voids present in shelves. The
solution is highly scalable and accurate and can be implemented for a wide
variety of products without any retraining. The paper covers the various
challenges which we overcame, and also showcases the model performance on
sample shelf layouts.
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v Keywords:

Computer vision, unsupervised models, machine learning, deep learning, semi-
supervised, void detection, image similarity, image embeddings, replenishment
and inventory management.

v Introduction:

In any retail business, it is very important that the customers are able to find the
required items on the shelf. At retail stores, out-of-stock shelves inevitably
reduce sales and customers cannot be considered a temporary loss. Some
survey results claim that in case of out-of-stock, 31% of the customers would
purchase in a different store, and 9% of customers do not purchase any
products. Since checking stock is such an important task, stores generally
increase the frequency of checking, but this also increases the time spent by
staff. The challenge for store owners is how to create an efficient process for
checking the shelves. For very large stores with millions of items, it becomes very
difficult to manually keep track of all the items on the shelf, and hence a
computer vision-based solution can automate the task of determination of
potential out-of-stock and an integrated system can be developed to replenish
the items from the back room or raise alerts to the replenishment managers to
deliver the next batch of products. In some situations, the customers can decide
they no longer need a product and can put it in a different store location than
the original. This is a serious problem, since the product becomes unaccounted
for, and might be lost or stolen. Usually, the back room of the stores would
maintain the inventory required to replenish the empty shelves, and such
restocking usually happens across the stores during off-hours for all categories.
There can be some high-moving items which can get over in a short period of
time, and customers would not be able to find the required product, even when
it is available in the back room. As a retailer, the end goal is to increase sales,
improve overall category profitability and become a store that caters for its
customers so that they’ll keep coming back. By ensuring that the shelves are well
stocked, the retailer can create a culture of accountability in their stores and
increase customer satisfaction by manifolds. With the advances in technology,
computer vision and artificial intelligence can come to the rescue of retailers.
There are robots which can scan the shelves, drones which fly overhead, and
even static cameras which can take images at regular intervals. The images from
these devices are passed to a central database, where they are processed, and
stitched together to recreate the actual implementation on the store shelves.



Column of ALUMNUS
Our system utilizes computer vision to get a real-time feed of the store shelves
and can determine beforehand if a particular product is out-of-stock or is
tending towards out-of-stock, and then generates an alert to the store
associates to replenish the required products. In some cases, the replenishment
process could also be automated using drones or robots in the store. Usually, the
store-specific planogram details like product name, and horizontal and vertical
facing quantities, would be available beforehand in the central data storage.
Now our system can utilize the pre-defined information, and stitched store shelf
images, to determine exact or partial out-of-stock scenarios in real-time. There
has been some work in the domain of out-of-stock detection, however, all such
work is heavily dependent on supervised learning, with tagged data, and none
of them considers partial out-of-stocks. It is very difficult and too expensive for
a large retailer to tag millions of items and build a supervised learning
framework. That is where our novel technique and system are very crucial.

The rest of this paper has been divided into the following sections: 1.
Introduction 2. Overview of the system, 3. Ensembled Out of Stock Detection
Framework, 4. Modelling & Inferencing Framework, 5. Advantages of the
system, 6. Results and Model Accuracy. Each section covers the technical aspects,
implementation, and benefits.

v Overview of the system:

Our system is primarily developed as a real-time Artificial Intelligence system,
which keeps capturing feeds of images from either drones, shelf-scanning robots
or static cameras, stitches together the shelf layout, runs a series of models for
out-of-stock detection and finally generates a report through an automated
alert to the responsible store manager or associates to replenish the items. The
input to our system mainly consists of Shelf images from Stores, Planogram
details like product names, and horizontal and vertical facing quantities. The
target is to identify and detect the voids present in the Shelf image as Partial
Voids or Out of Stock. Here Partial void is referred to the configuration when
some of the products of a given type are sold out. Out of Stock indicates that
the product is completely sold out. The images are collected from the cameras
or drones are then converted to an encoded string format and then passed
through an API to the central computing device hosted in the cloud.
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The ensemble model is deployed as a service through the API, which takes as an
input the actual store image in an encoded format, then processes the image
using pre-trained weights, and outputs the presence or absence of complete or
partial out-of-stocks, along with the location coordinates of the void. The output
image, with the demarcated voids, is encoded and sent back to the store
systems as alerts. The model training happens in a batch process at regular
intervals to keep updating the model parameters with the new data received.

Following is a diagrammatic overview of our system.

The images from the drones or cameras, once stitched are passed on to the
system mentioned above. For each image frame, the steps are run iteratively
and then a comprehensive report on the shelf availability is generated for
regular monitoring. If there are instances of partial or completed out-of-stock
present in any particular aisle, then an alert would be sent across to the
particular store associates or the store manager, on their mobile devices or
through email, with details on which products need to be replenished. The system
also cross-references with back-room inventory to decide if the supply chain
manager needs to be alerted to expedite the next batch of shipment.
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v Ensembled Out-of-Stock Detection Framework:

For the system to work very fast and be scalable, we need to optimize the
performance. Also, we cannot rely upon only one variant of the model, since it
needs to be generalized across all types of products in the store. We can use a
variety of supervised techniques to create an Ensembled Out-of-Stock
framework. We have the following main algorithms:

q Region-Based Convolutional Neural Networks:

The goal of R-CNN is to correctly identify the regions of the main object in the
image by proposing bounding boxes having objects and classifying them
accurately. The approach proposed to apply high-capacity convolutional
networks (CNNs) to bottom-up region proposals to localize and segment objects
and when there is minimal supervision, supervised pre-training for an auxiliary
task, followed by domain-specific fine-tuning, boosts performance significantly.

q Masked Region-Based Convolutional Neural Networks:

This solves Instance segmentation problems in a 2-stage framework. In the first
stage, it detects the bounding boxes and in the second stage predicts the object
class and generates a mask at the pixel level for the object. Masked R-CNN
presents a simple, flexible, and robust framework for object instance
segmentation which efficiently detects objects in an image while simultaneously
generating a high-quality segmentation mask for each instance.

q Single Shot Detection:

SSD, need to take one single shot to detect multiple objects within the image
and is much faster compared with two-shot RPN-based approaches. The
approach presents an object detection framework using a single deep neural
network by discretizing the output space of bounding boxes into a set of default
boxes over different aspect ratios and scales per feature map location. During
inference, the model generates scores for the presence of each object category
in each default box and suggests robust and efficient adjustments to the box
and enhances the mapping.



Column of ALUMNUS

These steps are followed in sequence to properly identify the most probable
region where the out-of-stock can be present. This ensemble framework ensures
high accuracy of the model with very fast response time of the model within
milliseconds.

v Modelling & Inferencing Framework:

In this section we would discuss in more details the actual model training and
inferencing framework to determine out-of-stock scenarios. Broadly we follow
the below-mentioned series of steps:

q Dataset Preparation and Augmentation:

For our case, the primary challenge is availability of good quality labeled
images with complete and partial out-of-stock present. We overcome this
challenge through a novel data augmentation technique. The primary task
comprises i) Dataset creation and formulation in an Object Detection framework,
ii) Dataset Augmentation for Object detection. The augmentation strategies for
object detection tasks are much more complex than in simple classification tasks
as we must keep a track of the position of the object while rotating and
translating the image. We leverage concepts from [6] which helps us in learning
and augmenting high-quality data with limited features.

q Feature Extraction:

When it comes to working with deep learning models there is no explicit need
for extracting the features from the data to train the models as compared to
traditional approaches. Convolutional Neural Networks act as feature
extraction layers and these features are used downstream like in this case
detecting void regions in planogram. Convolutional features are used for
classification as well as localization for the task in hand and sometimes features
from multiple layers are also used to make the network predict accurate
outcomes irrespective of the object size.
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q Model calibration:

The model calibration is done by minimizing on deviation: i) Where the object
actually is (location loss), ii) What is the object (class loss)

These techniques help in increasing confidence of detection of out-of-stock. This
is further validated with the information present in the planogram about the
number of products planned to be present in the shelf to accurately determine
the partial out-of-stock and predict beforehand the estimated time when the
product will go out-of-stock based on the rate of purchase.

v Advantages of the System:

We have faced multiple challenges while building our system, and we have
made our system resilient to these. The primary advantages of the system are
following:

q Semi-supervised Out of Stock Detection Methodology:

§ Very few examples of void images are fed as input to the model.

§ Created an intelligent data augmentation framework to enhance the
training set intelligently.

§ Ensembled model approach to enhance the semi-supervised performance
by capturing the complimentary information.

q Detection of Partial Void and Out of Stock Detection in very less time:

§ High accuracy of the model helps in detecting both the Partial void and Out
of Stock.

§ It is very crucial for businesses to understand when there is an out of stock or
partial voids so that they can take immediate actions and our model is
efficient and can inference in very less time.

§ It is scalable and can be implemented for any Shelf images and it will be
able to identify the partial voids and out of stock.
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Our system also works under different lighting conditions in the store and is
robust to partial image presence, and approximate matching.

v Results and Model Accuracy:

We have tried out our models on many different categories of products.
Overall accuracy of the model is around 90 % which is quite high, given that it
is a semi-supervised model.

Here are the model results for a few sample shelf-images:

This validates our model accuracy on a variety of product images.
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v Conclusion:

We have implemented the solution for the US with Store Shelf images provided 
by Drone cameras in Stores, Dec 2019.

Business Impact:

§ The model helps in providing an automated alert to the store personnel 
whenever there is an out-of-stock scenario, so that the necessary steps can 
be taken else an out of stock in a shelf is responsible for customer 
dissatisfaction.

§ It helps the business in merchandising, replenishment & assortment of 
decisions effectively.

§ Solution has been shared with the International Store Operations business 
and is in the process of getting implemented in the pipeline under Image 
Analysis.

This model will ensure better compliance of pre-emptive out-of-stock detection 
which will have significant uplift in incremental sales and improve customer 
experience. Estimates on optimal planogram showcase potential of around 10 
% lift in incremental sales, from predicted demand models.

v Acknowledgements:

We are grateful to the Business partners in the US and International Store 
Operations team for their support and guidance, and for providing us with 
necessary product images, Shelf images and planogram information.
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AN OVERVIEW ON MARKET BASKET ANALYSIS 

Sukanya Mukherjee, Kankana Ghosh 

1st Year, M.Sc. in Data Science 

 

❖ Introduction: 
 
Many of us have visited online retail stores such as Amazon and Flipkart to 

meet our daily needs. What we typically do is, search for the item, select the 
product and head towards the billing counter to purchase it. But in today's 
world the goal of any  organization is to increase revenue. Can this be   done 

by pitching one product at a time to the customer? The simple answer to it is 
no. Hence, organizations begin mining data related to frequently bought 
items. So, market basket analysis is one of the key techniques used by large 

retailers to uncover association between items. 

 

It is typically a data mining technique used by retailers to increase sales by 
better understanding customer purchasing patterns. It involves analysing 
large datasets, such as purchase history, to reveal product groupings, as well 

as products that are likely to be purchased together. An example would be 



 

 

that a customer who would purchase a laptop would more likely purchase a 
laptop bag along with it. 

There are two types of market basket analysis: 

Predictive market basket analysis: This type considers items purchased in 
sequence to determine cross-sell. 

Differential market basket analysis: This type considers data across 

different stores, as well as purchases from different customer groups during 
different times of the day, month or year. If a rule holds in one dimension 
(like store, time period or customer group), but does not hold in the others, 

analysts can determine the factors responsible for the exception. These 
insights can lead to new product offers that drive higher sales. 

Now, if a customer buys an item A, then there is a slight possibility or chance 

that they might buy B. This type of relationship is called Single Cardinality. 
But there can be cases where the customer who buys A and B also buys C or 
the customer who buys A, B and C also buys D. In these cases, the cardinality 

increases thus increasing the number of combinations around the data/item 
sets. If we have 10,000 or more than 10,000 data items then there will be 
so many rules that we have to create for each product. Thus, Association Rule 

Mining uses certain measures and that is where apriori algorithm comes in. 

 

Association Rule Mining is an efficient algorithm which helps the business 

make profit. It is all about building rules. It can be thought of as an if-then 
relationship. Just to elaborate in that, we have come up with a rule that 
suppose if item A is bought by the customer then the chances of item B picked 

by the customer too under the same transaction id is found out. It's not a 
casualty rather a co-occurrence pattern that comes to the force. There are 
two elements in this rule i.e. ‘if’  and ‘then’. Now ‘if’ is also known as 

antecedent. This is an item or a group of items that can typically be found in 
an itemset. And the later one is called the consequent. This comes along as an 
item with an antecedent group or the group of antecedent approaches. Now 

A=>B indicates that if a person buys an item A, he will also buy an item B or 
he will most probably buy an item B. 

There are 3 types of metrics which help to measure the association such as: 

Support: Support is the frequency of item A or the combination of item A or 
B. It is the frequency of the item which we have bought, by what the 
combination of the frequency of the item which we have bought are. With 

this we can filter out the item which was bought less frequently. 



 

 

Support =  
𝑓𝑟𝑒𝑞 (𝐴,𝐵)

𝑁
 

 

Confidence: Confidence gives us how often A and B occur together given the 
number of times A occurs. This also helps us solve a lot of problems, such as if 
somebody is buying A and B together and not buying C, we can simply rule 
out C at that point of time. According to this we can define our minimum 

support and confidence. After setting these values we can put them in the 
algorithm, filter out the data and create different rules. 

 

Confidence =  
𝑓𝑟𝑒𝑞 (𝐴,𝐵)

𝑓𝑟𝑒𝑞( 𝐴)
 

 

Lift: Lift is the strength of any rule. In the denominator we have the 
independent support values of A and B. This gives the independent occurrence 

probability of A and B. Now, if the denominator of lift is more, it means that 
the occurrence of randomness is more rather than the occurrence because of 
any association. 

Support =  
𝑆𝑢𝑝𝑝𝑜𝑟𝑡

𝑆𝑢𝑝𝑝 (𝐴)×𝑆𝑢𝑝𝑝 (𝐵)
 

 

If Lift (A => B) = 1, means that there is no correlation within the item set.  

If Lift (A => B) > 1, means that there is a positive correlation within the item 
set, i.e., products in the item set, A and B, are more likely to be bought 
together. 

If Lift (A => B) < 1, means that there is a negative correlation within the item 
set, i.e., products in item set, A  and B, are unlikely to be bought  together. 

 

❖ Apriori Algorithm: 
 

In Business sectors, according to the sales, the marketing teams have a 
minimum threshold value for confidence as well as the support. 

It uses frequent item sets to generate association rules. It is based on the 

concept that a subset of a frequent itemset must also be a frequent itemset. 



 

 

What is a frequent itemset? 

Frequent Itemset is an itemset whose support value is greater than a threshold 
value. 

Let us consider these Transactions where TID is the transaction ID and Items 
depict the ith item picked where i=1(1)5. 

 

TID Items 

T1 1 3 4 

T2 2 3 5 

T3 1 2 3 5 

T4 2 5 

T5 1 3 5 

 

Now, we build a list of itemset of size 1 by using this transactional data and 
calculate the respective support values. Let us assume that the minimum 

support count is 2 for the organization. 

 

 

Iteration 1: 

C1 

Item set Support 

{1} 3 

{2} 3 

{3} 4 

{4} 1 

{5} 4 

 

Here, we see that the itemset 4 has a support 1 because in the transactional 
data the frequency of the item et 4 to occur is 1. As this support is less than 



 

 

the minimum support count 2, so we eliminate item set 4. Hence, the final table 
F1 becomes, 

 

Item set Support 

{1} 3 

{2} 3 

{3} 4 

{5} 4 

 

We build a list of items set of size 2 and calculate the support. 

 

Iteration 2: 

C2 

Item set Support 

{1, 2} 1 

{1, 3} 3 

{1, 5} 2 

{2, 3} 2 

{2, 5} 3 

{3, 5} 3 

 

Here, we reject the item set {1, 2} as it does not satisfy the minimum support 
count. Hence, the final table F2 is, 

 

Item set Support 

{1, 3} 3 

{1, 5} 2 



 

 

{2, 3} 2 

{2, 5} 3 

{3, 5} 3 

 

Moving forward we calculate the support for the item sets of size 3 where 
the combinations are used from the item set F2 for this iteration. The item sets 

in C3 are {1, 2, 3}, {1, 3, 5}, {2, 3, 5}, {1, 2, 5}. Before calculating support, 
we perform pruning on the dataset. That is after the combinations are made, 
we divide C3 item sets to check if there is another subset whose support is 

less than the minimum support value that is what frequent itemset means. 

 

Iteration 3: 

C3 

Item set In F2? 

{1, 2, 3}, {1, 2}, {1, 3}, 

{2, 3} 

No 

{1, 3, 5}, {1, 3}, {1, 5}, 
{3, 5} 

Yes 

{2, 3, 5}, {2, 3}, {2, 5}, 
{3, 5} 

Yes 

{1, 2, 5}, {1, 2}, {1, 5}, 

{2, 5} 

No 

 

Here, the item sets {1, 2, 3} and {1, 2, 5} are eliminated as the subsets are 

not present in the transactional data. 

 

 

 

 

 

 



 

 

F3 

Item set Support 

{1, 3, 5} 2 

{2, 3, 5} 2 

 

 

In the last step we calculate the support for the  itemset of size 4. 

 

Iteration 4: 

C4 

Item set Support 

{1, 2, 3, 5} 1 

 

Here, as the support is less than the minimum support count, we stop the 
iteration here and move to the previous item set C3. 

 

Flowchart for discovering frequent item sets for mining Boolean Association 
rules: 

 

 



 

 

 

Let’s assume our minimum confidence value is 60% for the organization. To 
compute the confidence, we generate all the non-empty subsets for each 

frequent item sets.  

For I= {1, 3, 5} the subsets are {1, 3}, {1, 5}, {3, 5}, {1}, {3}, {5}  

For I= {2, 3, 5} the subsets are {2, 3}, {2, 5}, {3, 5}, {2}, {3}, {5}  

For each subset S of I, we output the rule: S → (I-S) (S recommends I-S)  

If,  
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝐼)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(𝑆)
 >= Minimum Confidence Value, 

Applying this rule to itemset F3, 

1: {1, 3, 5}  

Rule 1: {1,3}→({1,3,5} - {1,3}) means 1 & 3 → 5  

Confidence = 
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(1,3,5)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(1,3)
  = 

2

3
 = 66.67% > 60%  

Rule 2: {1, 5}→({1, 3, 5} - {1, 5}) means 1 & 5 → 3  

Confidence = 
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(1,3,5)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(1,5)
 = 

2

2
 = 100% > 60%  

Rule 3: {3, 5} → ({1, 3, 5}-{3, 5}) means 3 & 5 → 1  

Confidence = 
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(1,3,5)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(3,5)
 = 

2

3
 = 66.67% > 60%  

Rule 4: {1} → ({1, 3, 5} - {1}) means 1 → 3 & 5  

Confidence = 
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(1,3,5)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(1)
 = 

2

3
 = 66.67% > 60%  

Rule 5: {3} → ({1, 3, 5} - {3}) means 3 → 1 & 5  

Confidence = 
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(1,3,5)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(3)
 = 

2

4
 = 50% < 60%  

Rule 6: {5} → ({1, 3, 5} - {5}) means 5 → 1 & 3 

Confidence = 
𝑆𝑢𝑝𝑝𝑜𝑟𝑡(1,3,5)

𝑆𝑢𝑝𝑝𝑜𝑟𝑡(5)
= 

2

4
 =50% < 60%  

Here, Rules 5 and 6 do not satisfy the minimum confidence value so we reject 

these two rules. Hence the Rules 1, 2, 3 and 4 can be used by the 



 

 

organizations to increase their revenue. In a similar manner, we can find out 
the confidence for the itemset {2,3,5}.  

 

❖ Advantages: 
 

1. Helps in setting prices: Market basket analysis can point out that 
whenever a customer buys milk, they end up purchasing coffee as well. So, 
whenever the sale of milk and coffee is expected to rise, retailers can mark 

down the price of cookies to increase the sales volume.  

2. Arranging SKU (Stock Keeping Unit) Display: Market basket analysis 
helps identify items that have a close affinity to each other even if they fall 

into different categories. With the help of this knowledge, retailers can place 
the items with higher affinity close to each other to increase their sales. For 
instance, if chips are placed relatively close to a beer bottle, customers may 

end up buying both. In contrast, if they were placed in two extremes, then 
the customer would just walk in the store, buy beer and leave the store 
causing lost sales of chips.  

3. Identifying Sales Influencers: All items in a retail store have some 
relationship with each other – be it strong or weak. In most cases, the sale of 
one item is driven by the increase or decrease in the sale of other items. 

Market basket analysis can be used to study the purchasing trend of a certain 
SKU.  

 

❖ Disadvantages: 
 

1. Shortcomings: Although the market basket analysis is a data mining 
technique with considerable usability, it is by no means an infallible study of 
consumer behaviour.  

Firstly, even if an association between products shows promising evaluation 
metrics, it cannot directly prove the causality between the products. After all, 
correlation is not equal to causation. 

Secondly, like any data mining technique, the market basket analysis is prone 
to errors. It can falsely omit significant associations or falsely include 
insignificant associations. We perform our analysis keeping these 

shortcomings in mind, lest we draw wrong conclusions from our findings. 



 

 

Thirdly, when working with large datasets the Apriori algorithm is slow, 
inefficient and uses a lot of resources as it has to scan the database many 
times, generate a large number of candidate sets and check each of them. 

Hence, the cost to calculate the support increases. 

2. Iffy correlations: Way back before ‘big data’ (the ‘90’s), a retail company 
ran SQL queries against its store data and discovered that beer was often 

purchased with diapers. This discovery quickly caught wind, and stores 
started to put diapers and beer nearby on store shelves. Naturally, sales of 
the two went up together. 

The issue is, when the sales went up for the combination of items, stores were 
merchandising them next to one another in a highly trafficked area. The root 
of the problem is that we cannot seek out and validate correlations in data 

that we had a hand in creating. Thus, although market basket analysis may 
help us spot a trend but once we act on it, it becomes difficult to assess the 
validity of the correlation. 

3. Test and learn lag times: Because there are no clear calls to action, 
retailers who use these solutions must dedicate time to A/B test any actions 
they take as a result of the data. But how do we decide which correlation to 

A/B test? Testing even just the strongest correlations takes enormous time and 
effort. 

Let’s say we manage to pick a product pairing that we think will generate 

the most revenue. There’s a lot of work to make the test happen. For instance, 
if we’re going to run an in-store cross-promotion, we’ll need to re-organize 
our shelves, rework our planograms, and send directives down to all stores. 

From there, we’ll need to train staff on the new locations and make them 
aware of the promotion. We’ll then need an adequate amount of time 
(weeks? months?) to test whether or not we were right. 

Costs aside, from learning the correlations to making changes and then testing 
their efficacy and moving forward by using what we learned, this entire 
process is slow. 
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❖ Introduction: 

Mathematical models which represent causal relationships within an individual 
system or population are known as Causal models. Causal models are used 

to make inferences about causal relationships from statistical data. A causal 
model makes predictions about the behaviour of a system. Several types of 
Causal models can be developed such as Structural Equation Models, 

Probabilistic Causal Models, etc. 

Generally, Causal models have two components - node and edge. 

                                 

In Casual models, we need at least two nodes and one edge. 

The node represents variables and the edge represents the causal 
relationship between the variables. 

 

❖ Variables: 

Variables are the basic building blocks of Causal models. The variables can 
be nominal or numeric. The values of a variable can represent the occurrence 
or non-occurrence of an event, a range of incompatible events, a property 

of an individual or of a population of individuals, or a quantitative value. 
Suppose we want to model a situation where a killer shoots a bullet, and a 
person dies. We define our variables A and B in such a manner that, 

A=1 represents the killer shooting a bullet, A=0 represents the killer not 
shooting 

B=1 represents the person’s death, B=0 represents that the person remains 

alive 

 

❖ Types of Causal Models: 

 node node 

edge 



 

 

Causal models can be of various types. Some major types of Causal Models 
are –  

❑ Graphical Models:  

Graphical Models display causal relationships between variables through a 
directed graph. Here each variable is connected by an arrow to one or more 

other nodes upon which it has a causal influence. Here, an arrowhead 
describes the direction of causality, e.g. an arrow connecting variables X and 
Y with the arrowhead at Y indicates that a change in X causes a change in Y. 

❑ Rubin Causal Model: 

Rubin’s Causal Model is an approach to the statistical analysis of cause and 

effect based on the framework of potential outcomes. This model is also 
known as the Neyman-Rubin Causal Model.  

This model is based on the idea of potential outcomes. For example, a person 

would have a particular income at age 30 if they had attended college, 
whereas they would have a different income if they had not attended 
college. To measure the causal effect of going to college for this person, we 

need to compare the potential outcomes for the same person in both 
alternative futures. 

❑ Structural Equation Models: 

An SEM or Structural Equation Model characterises a causal system with a set 
of variables and a set of equations about how each variable depends upon 

the other. It is mostly used in social and behavioural sciences. Suppose a 
person wants to understand the factors that influence a student’s performance 
in an exam. Then he might take the factors and form some equations between 

the factors which are related to each other.  

Using SEM one may estimate the strength and direction of the relationships 
between variables and test the fit of the model on the data. 

 

❖ Important Statistical Tools in Causal Modelling: 

Various statistical analysis methods are used in Causal Models to understand 
the relationship between the variables more precisely. 

❑ Regression analysis in Causal Modelling:  



 

 

Regression analysis finds its use in causal modelling to identify and estimate 
the relationships between dependent and independent variables. Several 
types of regression analysis can be used in causal modelling such as linear 

regression, logistic regression, multivariate regression, etc. The effects of the 
variables that affect both the independent and dependent variables can be 
easily controlled using regression analysis. 

For example, if anyone is interested in the relationship between exercise and 
weight loss, one may select some individuals, measure their weights, and study 
their exercise habits. Here exercise habit is the independent variable and 

weight is the dependent variable. Through regression analysis, the 
relationship between these two variables can be estimated by controlling the 
other factors for weight loss like diet, age, etc. One may find that individuals 

who are engaged in more exercise tend to lose more weight. This would imply 
exercise has a causal effect on weight loss. 

❑ Instrumental Variable Analysis in Causal Modelling: 

If there is a confounder (A variable that affects both the dependent and 
independent variables) present then Instrumental Variable Analysis can be 

used to estimate the causal effect between the dependent and independent 
variables unbiasedly.  

If we are interested in the relationship between education and income, then 

we might collect data on education level (independent variable) and income 
(dependent variable). There may be some other variables that could affect 
both education and income like family background, access to job 

opportunities, etc. These factors could make it difficult to identify the true 
causal effect of education and income. Distance to the nearest school is a 
variable related to education but does not directly affect income. This is 

known as the instrumental variable that can be used to control the effect of 
confounders. Using the following equation causal effect of education on 
income can be estimated: 

The causal effect of education on income = (Coefficient of education on 
income) x (Correlation between instrumental variable and education)  

Instrumental Variable Analysis is a useful tool in causal modelling to estimate 

the causal effect in the presence of confounders. 

 

❖ Practical Applications of Causal Models: 



 

 

Causal Models are used in a variety of fields to make predictions, identify 
the cause of a particular phenomenon and evaluate the impact of 
interventions. Some practical applications of Causal Models are: 

1. Medicine: To identify the relationship between risk factors and the 
likelihood of developing a particular disease, Causal Models are used. They 
can also be used to evaluate the efficacy of different treatment options and 

to predict the outcome of a particular treatment. 

2. Economics: In Economics, to understand the relationship between variables 
such as prices, demand and supply, causal models are frequently used. They 

are helpful to make predictions about how changes in one variable will affect 
others, and to evaluate the impact of policies or interventions on the economy. 

3. Social Science: Causal models are commonly used in social science to 

understand the factors that influence human behaviour and social systems. To 
evaluate the effectiveness of interventions aimed at improving outcomes such 
as education, health and crime, causal models are effective. 

4. Marketing: In marketing, Causal models can be used to understand the 
relationship between variables like advertising, sales and customer loyalty. 
They can be used to make predictions about how changes in marketing 

strategies will affect sales, and to evaluate the effectiveness of different 
marketing campaigns. 

5. Environmental Science: To study the relationship between variables like 

climate, land, biodiversity, Causal models are effective. They can be used to 
predict the impact of environmental changes on ecosystems and to evaluate 
the effectiveness of interventions aimed at conserving or restoring natural 

habitats.   

 

❖ Conclusion: 

In conclusion, Causal models are a fundamental tool in statistical analysis used 
to understand and explain the relationships between variables in a system. 

These models rely on statistical techniques, such as regression analysis, 
structural equation modelling, and instrumental variable analysis, to identify 
and estimate the strength and direction of causal relationships between 

variables. Causal models are widely used in a variety of fields and are a 
crucial tool for understanding the underlying mechanisms that produce 
observed relationships between variables. 
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INTRODUCTION: 

Effective decision-making is critical to the success of any organisation or 
business. 

 

According to Nobel laureate Professor Daniel Kahneman, a person follows 
and makes decisions in two ways. 

 

❖ Intuitive Method 

❖ Logical, Evidence-based Method. 

 

The first method is more convenient and often faster but has a higher risk of 
error. The second method, on the other hand, is more time-consuming but 

generally is more reliable because it relies on reasoning and is evidence-
based. 

Statistical approaches allow organisations to collect data and analyse 

patterns and other trends related to research. Predictive Analytics uses 
current and historical data and eventually applies statistical techniques 
coupled with AI to predict future trends and draw conclusions about the 

anticipated outcomes. 

 

Why is Data-driven Decision Making necessary in Criminal Justice? 

 

While digging deep into criminal justice, we typically come across three main 
questions: 

1. Whom are we arresting? 

2. Whom are we charging? 

3. Who are we putting in the nation’s jail? 

 



 

 

The big problem with answering these questions is that the decisions are often 

made across the "police → prosecutor → court → prison" system. Based on 
intuition and experience, this procedure has its advantages and 
disadvantages. Subjective assessments often lead to wrong decisions. Here 

comes the need to introduce data and rigorous statistical analysis to make 
decisions in the field of criminal justice. 

 

Data-driven Criminal Justice is revolutionising many areas. These include: 

 

❖ Response Plan: By analysing law enforcement decisions and outcomes in 
responding to thousands of crimes, the experts can determine which response 
methods are appropriate in different types of situations, so that the judges 

can make more rational decisions when responding to acts about the crime 
being committed. 

❖ Crime Prevention: By combining data on crime with data reflecting skiving 
rates, rate of unemployment, instances of vandalism, and more; law 

enforcement can see both important and finer-grained correlations that 
affect crime. Once these segments of information are put together, analysts 
can use them to predict when and where different types of crime are most 

likely to occur. For instance, in a pilot program in Manchester, the police used 
advanced data analytics to apply preventative measures, resulting in a 
reduction of 12% in robberies, 21% in burglaries and 32% in thefts in motor 

vehicles. 

❖ Risk Assessment: In Texas, Leslie Chew was arrested for stealing four 
blankets on a cold winter night and kept in jail for $3500 bail which he could 
not afford to pay and was retained in jail for 8 months at a cost of taxpayers 

of $9000. This person possessed a low risk to public safety but was still 
retained and on the other hand, criminals possessing a higher risk to public 
safety are often released because of the way decisions are taken. 

Facilitating data-driven decision-making not only keeps high-risk criminals in 
jail and citizens safe but also ensures that the taxes citizens pay are used 
correctly. 

❖ Public Safety Assessment(PSA): 

The pre-trial phase of the criminal justice system is intended to protect public 
safety and enable defendants to appear in court while ensuring that the 



 

 

constitutional rights of citizens are upheld. However, research shows that low-
risk and non-violent offenders who cannot post bail are often imprisoned, 
while high-risk offenders are released from prison in many circumstances. This 

system causes serious harm to many innocent defendants and is a threat to 
our society. Hence, several jurisdictions are reforming their pre-trial systems 
to change the way they used to make decisions relating to pretrial release 

and detentions. 

They are shifting from decision-making based primarily on a defendant’s 
charge to decision-making that considers the level of risk that the offender 
may possess. The Public Safety Assessment, or PSA, provides reliable, 
evidence-based information that helps judges to determine if the defendant 

should be released before the next trial. The PSA tool uses information 
related to the defendant’s age, criminal record, and current convictions to 
determine whether a defendant is likely to commit a new crime or fail to 

appear for their court hearing if released before his next trial. This risk-
based approach helps in allowing a relatively small number of guilty suspects 
to remain in prison and low-risk offenders to be released and hence returned 

to society to await trial. 

 

   How does the PSA work? 

PSA uses those factors that are the strongest predictors of whether a 
defendant will commit a new crime, commit a violent crime, or fail to return 
to court if released before trial. The factors are: 

 

❖ whether the current offence is an act of violence 

❖ whether the person had a pending charge during the current offence 

❖ whether the person has a prior conviction for a misdemeanour 

❖ whether the person has a prior conviction of a felony 

❖ whether the person has prior convictions for committing violent crimes 

❖ age of the person at the time of the arrest. 

❖ number of times the person failed to appear at a pre-trial hearing in the last 
two years 

❖ whether the person failed to appear at a pre-trial hearing more than two 
years ago 

❖ whether the person has previously been sentenced to imprisonment. 



 

 

 

With the help of this information, the PSA produces two risk scores: one used 
for predicting the chances that an individual will commit a new crime if 

released before trial, and another, for predicting the chances that he will fail 
to return to the court for a future hearing. The tool will also calculate an 
elevated risk of the defendant committing a violent crime. The PSA risk score 

is expressed on a scale of 1 to 6, with higher scores indicating higher levels 
of risk. This neutral and authoritative method helps judges understand the risk 
that a defendant possesses if he is released. 

 

   Pre-Trial Risk Assessment (PTRA): 

In the Federal System, when a person is arrested and charged with a crime, 

court officials must decide whether to release the accused or imprison him 
until the case is resolved. The Pretrial Risk Assessment (PTRA) Instrument 
was introduced in the United States to assess a defendant's likelihood of pre-

trial misconduct. This includes failure to appear in court, pre-trial withdrawal, 
or re-arrest for new criminal offences. 

 

Development: The current study began with all defendants (n=565,178) who 
entered the Federal System between FY2001 and FY2007. After certain 
refinements and missing data, the final study was conducted on 185,827 and 

215,338 defendants. 

This study included two dependent measures (outcomes). The first measure, 
FTA/NCA, is an indicator of failure if the defendant either failed to appear 

in court or was charged with a new criminal arrest while on pretrial release. 
The second dependent measure, FTA/NCA/TV, is also an indicator of failure 
if the defendant either failed to appear; was arrested for a new criminal 

charge while on pretrial release, or had his/her bond revoked due to 
technical violations. 



 

 

A split sample process for construction and validation was applied. First, 
potential risk factors were identified 
based on results from previous studies 

and supplementary logistic regression 
analysis using split-sample processes 
and bootstrapping. Once a set of risk 

factors was identified, points were 
assigned to those risk factors and a risk 
score was calculated. The relationship 

between this score and outcomes of 
interest was assessed. Then apply the 
risk calculation to the remaining 50% of 

the sample to determine whether the 
risk instrument holds across the two 
halves of the larger sample. 

After conducting a series of bivariate analyses and multivariate logistic 
regression models, several factors relevant to predicting pre-trial outcomes 
and scoring schemes for each of these factors were identified. As indicated 

in Table 1, most factors are related to 
criminal history and the specifics of the 
current offence. 

Most items are scored in a 0 and 1 
format. Items with multiple point values 
also use a simple weighting process(0, 

1, or 2 points). 

Table 1 reports the failure rates based 
on the two outcomes (measures) for all 

defendants (column labelled A), the 
construction sample (column labelled 
C), and the validation sample (column 

labelled V). The relationship between 
the design pattern and the validation pattern remains largely unchanged. All 
relationships are statistically significant at the p < .001 level. 



 

 

As shown in Table 3, a full 30% of the accused fall into the lowest risk 
category (Category I). 

Almost similar percentages 

fall into categories II and III 
(29 per cent and 26 per cent, 
respectively). A very small 

percentage of defendants 
belong to categories IV and 
V. It is to be noted that both 

measures of failure rates 
increase from one category to the next. The failure rates for category V are 
10 times the failure rates for category I defendants when considering 

FTA/NCA. The FTA/NCA/TV measure also notes a similar trend. 

 

Results: The predictive efficiency of PTRA was tested on a sample of 85,369 

released defendants. The figure beside represents the percentage of people 
committing pre-trial violations, 
re-arrest, adverse events, etc. 

Based on crime type, samples 
have been distributed in 4 
PTRA classes. The AUC ranges 

from 0.0 to 1.0, with 0.5 
representing the value 
associated with the chance 

prediction. 

Minimum AUC-ROC scores of 
0.56, 0.64, and 0.71 

correspond to “small,” 
“medium,” and “large” effects, respectively. 

Higher AUC implies a better performance of the model in distinguishing 

between the positive and negative classes. 

This shows that PTRA effectively predicts pre-trial violations irrespective of 
whether the outcome of interest involves revocation from pre-trial release, 

re-arrest for any felony or misdemeanour offences, or a combination of these 
outcomes. This histogram (any adverse event as) shows that while on pretrial 
release, a tendency to commit any adverse event increased in the following 



 

 

incremental fashion by PTRA risk category: 4.7 per cent (PTRA ones), 10.5 
per cent (PTRA twos), 

19.9 percent (PTRA threes), 29.1 per cent (PTRA fours), and 36.1 per cent 

(PTRA fives). This was expected 
as, the higher the classifications, 
the higher the FTA rate. 

This figure represents that as the 
defendant’s PTRA scores have 
been increasing, violations in pre-

trials are also increasing which is 
to be expected. We can see that 
pretrial revocation has been 

increasing up to 22 per cent, 
corresponding to a PTRA score of 
12, decreasing to 20 per cent. Defendants with PTRA scores of 13 or above 

were recorded into PTRA 13s, as there were relatively few defendants with 
these very high PTRA scores (n= 19) to produce statistically reliable 
estimates. 

 

This figure illustrates that FTA (failure-to-appear) and arrests for violent crime 
offences surge as PTRA scores 

rise. A one-point increase in 
PTRA points results in 
incrementation in violations. 

Slight exceptions can be seen - 
when the PTRA score increases 
from 0 to 1 there is a decrease 

in FTA before increasing again. 
The violent re-arrest rates are 
essentially the same for defendants with PTRA scores of 1/2 and 5/6. 

 

Public Safety Assessment Dashboard: 

 

Developed by Arnold Ventures, the PSA Dashboard is a tool that uses nine 
risk factors to generate a score and predict three outcomes: failure to appear 
pre-trial, new criminal arrests, and new arrests for violent crimes. Decision 



 

 

makers use the PSA score along with the release conditions matrix to inform 
pretrial release conditions. 

APSA uses a variety of factors to predict 3 outcomes: FTA (failure to appear), 

NCA (new criminal arrest), and NVCA (new violent criminal arrest). 

PSA uses 4 factors to calculate the FTA score: 

● Pending charge at the time of the arrest 

● Prior convictions 

● Prior failure to appear in the past 2 years 

● Prior failure to appear older than 2 years. 

 

The table below shows how PSA assigns points to FTA factors: 

 



 

 

Each factor is weighted according to its strength of relationship with the 
specific outcome. Similarly, the following tables show how PSA assigns factor 
weights to NCA and NVCA. 

 

CONCLUSION: 

PSA is highly accurate in predicting pre-study outcomes. However, PSA can 

be dramatically improved if better-quality data can be integrated. Data-
driven Decision Making is the future of the Criminal Justice system. 
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EFFECT OF WORDING BIAS IN SURVEY 

Bishwayan Ghosh, 2nd Year 
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❖ Wording Bias: 
 

Wording bias is a type of bias in which the respondent is influenced by the 
wording of the question. For example, a question asking people’s views on 

the statement: “Welfare helps people to get back on their feet” will get an 
extremely different response than the one asking their views on the statement: 
“Welfare pays people who don’t work”. The former will get a positive 

response, whereas, the latter is expected to get a negative one. This bias can 
also occur as a result of the questions that are being framed in a way, in 
which it is difficult to understand for the respondents. 

In this article, our goal is to demonstrate the effect of wording bias in a 
survey. In order to do so, we have conducted a survey, where we chose 
questions that are susceptible to wording bias. The details of the survey and 

data collection are given in the next section. 

 

❖ Data Collection: 
 

We chose four topics and decided to see what are the opinions that people 
have on them. For each topic, we chose a question and have framed it in two 
different ways. This also resulted in two different questions, which had the 

same meaning but different wordings. Each question had possible answers as 
“YES” or “NO”. Clearly, if wording bias does not have an effect, both the 
questions should have the same proportion of “YES” and “NO” answers. The 

topics chosen were: 

❑ Topic 1: 

Whether people think that meditation helps in increasing our concentration. 

Question 1: It is believed that meditation increases concentration on work 
and academics. Do you think so? 

Question 2: Researchers from a well-known university claimed that 
meditation does NOT affect concentration on work and academics. Keeping 



 

 

this in mind, do you think that meditation increases concentration on work and 
academics? 

 

❑ Topic 2: 

Whether people think that the violence shown in movies and video games 

have a detrimental effect on the mindset of the youth. 

Question 1: Many studies, including one from Dr. Gentile at Iowa State 
University, have proven that playing and watching violent video games cum 

movies can give rise to aggression in children. Keeping this in mind, do you 
think children playing violent video games tend to have aggressive behaviour 
when they grow up? 

Question 2: Do you think children playing and watching violent video games 
and movies tend to have aggressive behaviour when they grow up? 

 

❑ Topic 3: 

Whether people think that classical and pop music have the same effect on 

logic. 

Question 1: It is believed that listening to music increases our IQ and logic. 
But classical and pop music are quite different. Do you think classical music 

and pop music have the same effect on our logical abilities? 

Question 2: A social experiment carried out by National Geographic 
Channel revealed that both classical and pop music have the same effect on 

our logical abilities. Do you think so? 

 

❑ Topic 4: 

Whether diet is more important than exercise for reducing weight. 

Question 1: Do you think cutting down your calorie intake WITHOUT much 

exercising will help you to lose weight? 

Question 2: Several studies have shown that reducing your calorie intake is 
more efficient in reducing weight as compared to that caused by exercising. 

Do you agree with this opinion? 



 

 

Clearly, for each topic, both the questions have effectively the same meaning. 
We constructed two surveys, each containing one question from each topic. 
Survey A consisted of Question 1 while Survey B consisted of Question 2 from 

all the topics. 

We conducted the survey using google forms. Each respondent was given 
one survey. In order to randomise the two surveys among the respondents, 

we created two different “sections” in our google form. At the start of the 
form, we kept a question with two similar looking images as options. Each 
option led to one of the two sections corresponding to the two surveys. We 

further used the “shuffle option order” in order to minimise any other kind of 
bias. 

 

 
 
 

❖ Observations: 
 

A total of 214 responses were received. Out of them, Survey A was filled by 
110 respondents and the remaining 104 filled Survey B. 

For topic 1, the percentage of ‘Yes’ (blue) and ‘No’ (red) answers for 

questions 1 and 2 are respectively: 

 

 

 

 

 

 

 

For topic 2, the percentage of ‘Yes’ (blue) and ‘No’ (red) answers for 

questions 1 and 2 are respectively: 



 

 

 

 

 

 

 

 

 

 

For topic 3, the percentage of ‘Yes’ (blue) and ‘No’ (red) answers for 

questions 1 and 2 are respectively: 

 

 

For topic 4, the percentage of ‘Yes’ (blue) and ‘No’ (red) answers for 
questions 1 and 2 are 
respectively: 

 

 

 

 

 

 

 

❖ Statistical Analysis: 
 



 

 

While having a glance at the pie charts, it seems as if the proportion of “YES” 
and “NO” as answers for the two questions in topics 1 and 2 are almost the 
same, while the proportion is different for topics 3 and 4. Now, we shall 

prove our claims or ‘eye-estimates’ with the tool of hypothesis testing. Below 
is the procedure of testing of two independent binomial proportions that 
we have used as the aforementioned proportions follow Binomial distribution. 

Let X and Y be two random variables denoting respectively the number of 
times “YES” has been selected as an answer in question 1 of a topic from a 
randomly selected sample of 110 responses and in question 2 of a topic from 

a randomly selected sample of 104 responses. 

Clearly, X ~ Binomial(110, p1) independently of Y ~ Binomial(104, p2), 
where, p1 and p2 are the proportion of “YES” answers for question 1 and 

question 2 respectively. 

Let us define the test statistic as, Z = X+Y 
Let x0, y0 and z0 be the observed values of X, Y and Z =( X+Y) respectively. 

Null Hypothesis H0 : p1 = p2 = p (say), where p is known. 
Null Distribution: Under H0, Z ~ Binomial(214,p) 
For X = x0, Y = y0 and Z = z0, the distribution of X | X+Y (or equivalently, 

X | Z) is 

P(X = x0 | X + Y = z0) =
𝑃(𝑋 = 𝑥0,𝑋 + 𝑌 = 𝑧0)

𝑃(𝑋+𝑌=𝑧0)
=  

(
𝑛1
𝑥0

)(
𝑛2

𝑧0−𝑥0
)

(
𝑛1+𝑛2

𝑧0
)

 

𝑇ℎ𝑢𝑠, 𝑋 | 𝑋 + 𝑌 ~ 𝐻𝑦𝑝𝑒𝑟𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐(𝑛1 + 𝑛2, 𝑥0,
𝑛1

𝑛1 + 𝑛2
) 

Here, sample sizes are n1 = 110 (Question 1), n2 = 104 (Question 2), for 
each topic. 
 

We are going to use the p-value approach to test for equality of proportion 

of “YES” in the two questions, at 5% level of significance (α = 0.05). We 

reject the null hypothesis if the p-value (p*) is less than the level of significance 

and we fail to reject the null hypothesis if the p-value is greater than level of 
significance. The calculations and conclusion had been tabulated below in the 
following table:  In the table, x0 and y0 denote the number of “YES” given as 

answer for Question 1 (out of 110) and Question 2 (out of 104) respectively. 
 
In each case, the Null Hypothesis is the same, as stated above, i.e., H0: p1 = 
p2. 

 



 

 

Topi
c 
No. 

x0 y0 

Alternate 
Hypothes
is 

p-

value 
Decision Conclusion 

1 
9
8 

8
9 

p1 < p2 0.830 
Fail to reject 
H0 

the proportion of “YES” 
can be considered to be 
the same for questions 1 

and 2 of topic 1. p1 > p2 0.285 
Fail to reject 

H0 

2 
7

0 

7

0 

p1 < p2 0.337 
Fail to reject 
H0 

the proportion of “YES” 
can be considered to be 

the same for questions 1 
and 2 for topic 2. p1 > p2 0.760 

Fail to reject 
H0 

3 
3

6 

4

7 
p1 < p2 0.042 Reject H0 

the proportion of “YES” 

for question 1 is 
significantly less than 
that of question 2 for 

topic 3. 

4 
4
2 

5
8 

p1 < p2 0.007 Reject H0 

the proportion of “YES” 
for question 1 is 

significantly less than 
that of question 2 for 
topic 4. 

 
 

From the above calculations, we see that wording bias has a significant effect 

on the answer of respondents for topics 3 and 4, whereas it did not have such 
impact in topics 1 and 2. Thus, it is surely evident that a change in the wording 
of a question can potentially change the views of the respondents. 

 

❖ Conclusion: 
 

Wording bias, which makes the collected data less valuable, is not 
acceptable in a survey. The questions itself are phrased in a manner so as to 

direct respondents to a desired answer. It can be reduced by framing 
questions using simple and lucid language. They should be neutral and 
straightforward. The respondent should have a basic knowledge and 



 

 

understanding of the topics that are being surveyed. Wording bias can also 
be reduced if the respondents have a firm opinion about the topic and do 
not get influenced by some extra information given in the question. For 

instance, most people firmly believe that meditation increases our 
concentration. Hence, even after trying to influence their opinion by giving 
some extra meditation, their answers remained the same. Also, in general, 

people in our society firmly believe that violent video games tend to result in 
aggressive behaviour among children. Hence, no wording bias was observed 
in topics 1 and 2. 

Usually, a question is framed in a single way in a survey unlike ours, where 
each was framed in two different ways. We should prefer the one with least 
amount of additional information, as it may influence the respondents’ answer 

resulting in wording bias. 

If we are to choose a single question from each topic, we should choose, 
Question 1 for Topic 1, Question 2 for Topic 2, Question 1 for Topic 3, and 

Question 1 for Topic 4 as they do not try to influence people’s opinion by 
quoting the results of other studies. 
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THE IDEA OF ENTROPY IN STATISTICS AND ITS 
APPLICATION IN THE DECISION TREE CLASSIFIER MODEL 

Spandan Ghosh, 1st Year, M.Sc. in Data Science 
Sayan Das, 1st Year, M.Sc. in Data Science 

 

❖ Introduction: 

In our day-to-day activities, we often come across some decision-making 
problems that we have to solve on our own, based on past experience. For 

example, we may have to make a decision about whether we should carry 
an umbrella or not before we go out or whether an email is spam or not. In 
the glossary of Data science, these problems are called classification 

problems. Where we need to classify some objects according to some 
attribute. In our first example - The object can be a day, and we have to 
classify whether it is a sunny day or it is a rainy day. And in the second 

example, we need to classify whether the emails are spam or not.  

 

Now, the decision-making in these problems will be better in accuracy, that 

is, the decisions will grasp reality better if we allow it to be data-driven. 
With respect to the first example, suppose we have a data set on several 
meteorological measurements on a daily basis and the observations of 

whether the day was a rainy day or a sunny day, then based on this dataset 
we may be able to predict if today is going to be a sunny day or a rainy 
day, provided we have the similar metrological measurements at hand for 

today.  

 

There are several algorithms that are used in an automated system to 

implement this decision-making feature using previous data. One of those 
algorithms is a Decision Tree Classifier model, a non-linear classifier 
algorithm used for decision-making purposes. It is based on the ID3 (Iterative 

Dichotomiser 3) algorithm developed by Ross Quinlan. The ID3 algorithm is 
based on the foundation of Statistical Entropy.  

 

In this article, we are going to discuss the ID3 algorithm for building up a 
Decision Tree with a simple example, for which we are going through the 
idea of Entropy. 



 

 

 

 

❖ What is Entropy? 

The concept of Entropy in Information Theory was first proposed by Claude 
Shannon in his paper “A Mathematical Theory of Communication”. It is 

basically a measure of “uncertainty” or “surprise” in the values of a random 
variable. Let’s revise how the concept of Entropy was developed. 

 

❑ Development of the Idea of Entropy: 
 

To understand the concept of entropy we need to understand “surprise” or 
“uncertainty”. Let us do it with an example. 

 

Consider a random experiment of throwing a die. Suppose we are interested 
only in the occurrence of a “six”. Now, let p(0 ≤ p ≤ 1) be the probability of 
getting a “six” in a single throw of the die.  

 

Now, assume p is very low (say p = 0.01). That means if we go on throwing 
the die, we hardly ever come across a “six”. Now in this scenario, if by fortune 

a “six” occurs, then we will be surprised as it is a nearly impossible event 
under this setup. Also if in this scenario some of the faces that are other than 
“six” (like “one”, “five” etc.) turned up, then we wouldn’t have been surprised 

at all, because when the probability for “six” to turn up is such low then the 
compliment cases will automatically have a higher probability of occurrence.  

 

From the discussion of the above example, we are now in a state to 
appreciate that, the amount of surprise that we get from the occurrences of 
an event is inversely related to the probability of the occurrence of that event. 

So, we can write, 

𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑠𝑢𝑟𝑝𝑟𝑖𝑠𝑒 𝑜𝑓 𝑎𝑛 𝑒𝑣𝑒𝑛𝑡 

∝  
1

𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 𝑜𝑓 𝑜𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑒𝑣𝑒𝑛𝑡
 

 



 

 

But there is one problem with using the inverse of probability to measure the 
amount of surprise of an event. Suppose in the previous example - say the 
probability of occurrence of “six” in a single throw of a die, i.e. p, is very 

high, (say p=1). Now if in a throw of a die, we get a “six”, we will not be 
surprised at all. Meaning that here our amount of surprises is 0. But this fact 

is not reflected if we calculate surprise using 
1

𝑃("𝑠𝑖𝑥")
. Here as p = 1, we will 

get surprised = 
1

1
= 1. To let go of this confusion we use to take log(

1

𝑝
) while 

calculating the amount of surprise of an event. 

 

Now, we are in the stage to get an idea of what entropy is. The entropy of 

a random experiment is the expected amount of “surprise” or “uncertainty” 
or “randomness” that is inherent in the possible outcomes of that random 
experiment.  

 

Consider a random experiment W that has n number of possible outcomes e1 
,e2 ,e3 ,...en and the probability of occurrences of the event ei , is Pi. Then, the 

entropy of the W is given by, 

 

𝐸 = ∑𝑛
𝑖 =1

1

𝑃𝑖
 )  Pi 

=  − ∑

𝑛

𝑖 =1

𝑃𝑖 ) 

 

 

 

We can define it for a random variable too. If X be a random variable 
assuming the values x1, x2, x3,...xn and P(X= xi) = pi then the entropy 

associated with the random variable X is given by 

𝐸 =  − ∑

𝑛

𝑖 =1

𝑝𝑖𝑝𝑖 ) 

 



 

 

❑ The interpretation of Entropy: 
 

From the previous discussion, we have seen that entropy measures the surprise 
or randomness in the system. In our previous example, if the probability of 
occurrence of “six” is very high or very low, then in those cases only one type 

of outcome will occur mostly - either it will be “six” (when the probability of 
“six” is high) in most of the cases or the outcome will be “not six” (when the 
probability of “six” is low). 

 

Now, consider 100 throws of the die, Let's say p = 0.97. Then those hundred 
outcomes will be more or less homogenous (most of them are “six”). Ideally if 

p = 1 then all the 100 outcomes will be “six”. In that case, we will say the 
outcomes are pure. Also when ideally p = 0 then all the outcomes will be “not 
six”. Then also we will say that the outcomes are pure. As p moves between 

0 and 1, the heterogeneity in the outcomes varies and so does the impurity 
in the outcomes.  

 

So, the entropy of a random experiment is measuring the impurity in the 
outcomes of a random experiment. The higher the value of the entropy is, the 
lesser the impurity in the outcome of the random experiment.  

 

The main application of entropy in the implementation of the decision tree is 
associated with the ability of entropy to measure the impurity in the outcomes 

of the random experiment. We will use it to calculate the impurity of the leaf 
node of a decision tree. But what is a leaf node? Let’s first study the decision 
tree.   

 

❖ Introduction to Decision Tree: 

Decision trees are a form of machine learning technique that may be applied 
to both classification and regression applications. A decision tree learns a 
hierarchy of judgments based on a set of features in order to build a model 

that can make predictions based on those features. 

 



 

 

A decision tree works by creating a tree-like model of decisions based on 
the features of the data. At the top of the tree is a root node that represents 
the whole dataset. The root node is then split into two or more branches, each 

representing a different decision or feature. The branches are further split 
into smaller branches until they reach a leaf node, which represents a 
prediction or classification. 

 

Decision trees are a simple and effective way to make predictions based on 
a set of features, and they are widely used in many different fields, including 

finance, healthcare, and marketing. 

 

❖ Illustration with an example: 

Here's an example of a decision tree for predicting whether an animal is a 
cat or a dog: 

 

 

 

 

In this example, the root node is the decision to determine whether the animal 
has fur. If the answer is "yes," then the algorithm will consider the length and 
shape of the animal's tail to make a prediction. If the animal has a long and 



 

 

thin tail, the algorithm will predict that it is a cat. If the animal does not have 
a long and thin tail, the algorithm will predict that it is a dog. 

 

If the answer to the root node is "no," then the algorithm will consider the 
length and shape of the animal's body to make a prediction. If the animal 
has a long and slender body, the algorithm will predict that it is a snake. If 

the animal does not have a long and slender body, the algorithm will predict 
that it is a lizard. 

 

This is just one example of how a decision tree could be used to make a 
prediction. Decision trees can be used for a variety of purposes, including 
classification, regression, and decision-making. 

 

 

❖ Use of Entropy in Decision Tree: 

In decision tree learning, entropy is used as a measure of the impurity of an 
attribute. The entropy of an attribute is calculated based on the frequency 

of each unique value (or class) in the attribute. If the attribute is pure, meaning 
that all of the values in the attribute belong to the same class, then the entropy 
is zero. On the other hand, if the attribute is completely mixed, meaning that 

there are equal numbers of values belonging to different classes, then the 
entropy is at its maximum. 

 

The goal of decision tree learning is to create a tree with nodes that are as 
pure as possible, meaning that the values within each node all belong to the 
same class. To do this, the decision tree algorithm will try to split the data at 

each node in a way that maximizes the purity of the resulting nodes. This is 
where entropy comes in: the decision tree algorithm will use entropy to 
determine the best split at each node. 

 

Let's discuss this with the Help of an example, consider the following data of 
n = 10 cases of Human Survival with respect to the temperature and presence 

of Water and Flora & Fauna.  

 



 

 

Temperature Water Flora & Fauna Human Survival 

Hot Present Present No 

Hot  Not Present Present Yes 

Hot  Present Present Yes 

Cool  Not Present Not Present No 

Cool Present Not Present No 

Cool Not Present Not Present No 

Cool Present Present No 

Hot  Not Present Present Yes 

Hot Present Not Present  Yes 

Cool Not Present Present  No 

 

 

❖ Procedure of Building a Decision Tree: 

In the above example, the variable of interest is Human Survival. We have 
to classify a newly given place and whether it is possible for humans to 
survive based on the temperature of the place and the presence of the 

water and Flora and Fauna in the place. Here there are 3 predictors that 
are respectively temperature, presence of water, and presence of flora 
and fauna. To build a decision tree, on this data, we first have to decide 

which of these three predictors is Most informative. We will find this out by 
following the procedures shown below.  

 

In the first step, we are going to calculate the Entropy of the column named 
‘Human Survival’ i.e. EHumanSurival given by the formula -  



 

 

 

𝐸𝐻𝑢𝑚𝑎𝑛 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 

=  − 𝑃("𝑌𝑒𝑠"). 𝑙𝑜𝑔2(𝑃("𝑌𝑒𝑠")) −  𝑃("𝑁𝑜"). 𝑙𝑜𝑔2(𝑃("𝑁𝑜")) 

 

Note that this quantity EHuman Survival   gives the idea of randomness within the 
values of the Human Survival Column.  

 

In this example 𝐸𝐻𝑢𝑚𝑎𝑛 𝑆𝑢𝑟𝑣𝑖𝑣𝑎𝑙 = 0.971 

 

Now in the next step, for each predictor variable, we are going to calculate 

the Entropy of the Human Survival for each of the labels of the predictor. For 
example, consider the predictor variable temperature. The temperature 
variable has two labels, ‘Hot’ and ‘Cool’. So we split the dataset into two 

parts, one where the temperature is ‘Hot’ and the other where the 
temperature is ‘Cool’. Now for each of the two data sets, we calculate the 
Entropy of Human Survival.  

 

Specifically for the Label ‘Hot’ under the Temperature variable,  we 
consider only those records for whom Temperature is labelled as ‘Hot’, then 

we calculate Entropy EHuman Survival |Hot as - 

 

EHuman Survival / Hot = − 𝑃("𝑌𝑒𝑠"|′𝐻𝑜𝑡′). 𝑙𝑜𝑔2(𝑃("𝑌𝑒𝑠"|′𝐻𝑜𝑡′)) −
 𝑃("𝑁𝑜"|′𝐻𝑜𝑡′). 𝑙𝑜𝑔2(𝑃("𝑁𝑜"|′𝐻𝑜𝑡′)) 

 

This quantity gives the idea of the randomness of the Human Survival 
columns of the places where the temperature is labelled as ‘Hot’.  

 

Similarly, we can calculate EHuman Survival / Cool  as - 

 

EHumanSurvival/Cool= − 𝑃("𝑌𝑒𝑠"|′𝐶𝑜𝑜𝑙′). 𝑙𝑜𝑔2(𝑃("𝑌𝑒𝑠"|′𝐶𝑜𝑜𝑙′))  −
 𝑃("𝑁𝑜"|′𝐶𝑜𝑜𝑙′). 𝑙𝑜𝑔2(𝑃("𝑁𝑜"|′𝐶𝑜𝑜𝑙′)) 



 

 

 

This quantity gives the idea of the randomness of the Human Survival 
columns of the places where the temperature is labelled as ‘Cool’. 

 

Now, to determine how much information, the predictor variable 
Temperature holds to determine the response variable Human Survival, we 

can determine the Gain(temperature) as  

 

Gain(Temperature)= EHuman Survival- P(‘Hot’).EHuman Survival/Hot-P(‘Cool’).EHuman 

Survival/Cool 

 

Since in this quantity, the average entropy of Human Survival due to 

temperature is subtracted from the unconditional entropy of the same, the 
quantity gives us the amount of information gained for treating the 
temperature variable as a predictor variable. The more the value of 

Gain(temperature) the more informative the Temperature variable is in 
guessing Human Survival. 

 

Now our job is to get this Gain() value for all the predictor variables and set 
that variable as the root node of the decision tree which has the highest 
information gain. 

 

Here in the example, we got Gain (Temperature) = 0.610, Gain (presence 
of Water) = 0, and Gain (presence of Flora & Fauna) = 0.046. Since the 

Gain(temperature) has the highest information gain we will select the 
temperature as the root node of the decision tree. 

 

Once we select the root node as Temperature, it will have two branches 
(One for each), since it can assume only two values ‘Hot’ and ‘Cool’. Now 
observe that in the data table, for the records where the Temperature 

value is ‘Cool’ the corresponding value of the Human Survival is always a 
‘No’  So, the branch corresponding to ‘Cool’ in the root node will result in a 
leaf node - ‘No’. We will call this type of branch a ‘Pure Branch’. It always 

results in a leaf node. On the contrary, the records that hold the 



 

 

Temperature value as ‘Hot’ contain both ‘Yes’ and ‘No’ in the Human 
Survival Column. This type of branch is called an impure branch. This leads 
us to some undecided situations. The Decision tree at this current stage will 

look like the following -  

 

 

 

Now, here we can see that the right part of the tree is complete. Now we are 
stuck in the left part where all the Temperature observation is ‘Hot’. We now 
have to decide on the basis of the other features like the presence of Water 

and the presence of Flora & Fauna, which were previously ignored as they 
contain less information compared to temperature. 

 

What we can do is we can consider those records that have Temperature  = 
‘Hot’ and calculate the Gain of the presence of Water and presence of Flora 
& Fauna predictors by the method of entropy (done previously), to see which 

one among them holds the most of information about deciding Human 
Survival. 

 

So here, proceeding in a similar fashion as before, for the data where the 
Temperature = ‘Hot’ we get Gain (presence of Water | Temperature = ‘Hot’) 
= 0.171 and Gain (presence of Flora and Fauna | Temperature = ‘Hot’) = 

0.171. Since under this situation, the presence of Water has more information 
gain, we can add the presence of Water in the left branch of the previous 
tree. Since the presence of water has only two types of values ‘Present’ or 

‘Not Present’, this node will also have two branches. The branch where the 
presence of Water = ‘Present’ (also Temperature = ‘Hot’ previously) has 2 
out of 3 ‘Yes’ as Human Survival value and 1 out of 3 ‘No’ resulting in an 

impure branch but all the records that have the presence of Water = ‘Not 



 

 

Present’ (also Temperature = ‘Hot’ previously) result in ‘Yes’ as the value of 
Human Survival resulting a leaf node. Then in this stage of modification, the 
decision tree becomes -  

 

 

 

 

Now, we are left with only one predictor to decide with this undecided 

situation and that is the presence of Flora and Fauna. We will choose this 
variable as a node. Similar to previously, here also there will be two different 
branches. The branch with ‘Not Present’ (presence of Water = ‘Present’ and 

Temperature = ‘Hot’ as previously) has only one record with ‘Yes’ as the 
Human Survival value. This concludes with a leaf node. On the other hand, 
the branch with ‘Present’ (presence of Water = ‘Present’ and Temperature = 

‘Hot’ as previously) has 1 out of 2 saying Human Survival = ‘Yes’ and 1 out 
of 2 saying Human Survival = ‘No’. This again leaves us in an undecided 
state, but here the case is different. Here we are out of predictor variables. 

That means we have no other predictor variable for the further split. So, here 
is the presence of Flora and Fauna = ‘Not Present’ then we will predict Human 
Survival = ‘No’ since it is the most probable in the whole dataset. So, our final 

decision tree is like this -  



 

 

 

 

Now the decision tree is complete. It can now be used for prediction 
purposes.  

 

❖ Prediction using the Decision Tree Classifier Model: 
 

A decision tree classifier can be used to make predictions by first dividing 
the data into a training set and a test set. The training set is used for building 
the model, while the test set is used for evaluating the model's performance. 

After choosing the features to be used as inputs for the model, the decision 
tree is constructed by starting with the root node and branching out based on 
the values of the selected features. Predictions on new data can then be made 

by following the branches of the tree corresponding to the values of the input 
features until a leaf node is reached. The label of this leaf node is the 
prediction made by the model. 

 

Using a decision tree classifier model, we can predict the possibility of human 
existence on a given planet by considering the following factors: 

 



 

 

● Temperature: If the temperature is cool, human existence is not possible on 
that planet. If the temperature is hot, we move on to the next factor. 
 

● Water: If the planet has water, we move on to the next factor. If it does not 
have water, the existence of humans is not possible. 
 

● Flora and fauna: If flora and fauna are present, human life is possible on 

the planet. If they are not present, the existence of humans is not possible. 
 

 

Overall, the decision tree classifier model uses these three factors to predict 
the possibility of human existence on a given planet. 

 

❖ Conclusion: 

A decision tree is a very powerful tool for the purpose of prediction. It is a 

Non-linear classification model, whose main foundation is Shanon’s Entropy. 
It can give an excellent prediction result when it comes to the classification 
problem. Sometimes, one uses more than one decision tree, to classify 

problems which gives rise to a new model called Random Forest. 

 

Python Package named ‘sklearn’ (Scikit learn) provides us API called 

DecisionTreeClassifier() (usage: sklearn.tree.DecisionTreeClassifier()) that 
helps us to easily implement a Decision Tree model on some dataset.  

 

Here, we have only considered the predictor variables to be qualitative 
variables. If one or more of the predictor variables are quantitative, then 
those variable values should be treated in a slightly complex and different 

way, but the idea is the same as in qualitative variables. Also, there is a 
model called Decision Tree Regressor, here the response variable is a 
quantitative variable. 
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LADY TASTING TEA EXPERIMENT 

Anushka Bose, 2nd Year 

 

❖ Introduction: 

One of the most important topics in Statistics lies in the study of Statistical 
Inference. Inferential Statistics is the process of estimating our parameter of 

interest (for example, height of people aged 18 in India) based on a 
sample of data, under the assumption that our observed data set is 
sampled from a large population. This can be done mainly, in three ways - 

Point Estimation, Interval Estimation and Testing of Hypothesis. In Testing of 
Hypothesis, we accept or reject certain conjectures regarding our 
parameter of interest on the basis of our sample dataset; all while allowing 

a certain level of error. This assumption / conjecture is referred to as the 
“Null Hypothesis”. This term was coined by Sir Ronald Aylmer Fisher, one of 
the founding fathers of modern statistics; in his work, ‘The Lady Tasting Tea’ 

experiment reported in his book The Design of Experiments. 

The lady in question was Dr. B. Muriel Bristol, an algologist. One afternoon 
at the research station Rothamsted, when Fisher drew a fresh cup of tea 

and offered it to the lady, she declined it, stating that she preferred to add 
the milk to the tea instead of adding tea to milk as Fisher had prepared it. 
Fisher laughed it off protesting that it made no difference. However, she 

was adamant in her claim and was determined to defend her tastes. It was 
then that Fisher decided to test her by performing an experiment which is 
now known as ‘The Lady Tasting Tea’ experiment. 

 

❑ Statement of the Experiment: 

The first question that comes to mind while preparing for the experiment, is 

how many cups of tea should be used in the test; whether they should be 
paired or not and in what order should the cups be presented. Here, the 
numbering and ordering of cups should be determined in such a way so as 

to prevent the correct discrimination of the order of pouring in the cups of 
tea, simply by pure chance. 

Fisher first prepared eight cups of tea, half of which, i.e., 4 cups were 

prepared with milk added first and then tea while the remaining 4 cups 
were prepared with tea added first which was eventually followed by milk. 
The cups were then arranged in a ‘random order’ and hence, presented to 



 

 

the lady. She had previously been told what the test would consist of, i.e., to 
taste the eight cups and distinguish, if possible, the 4 cups in which milk was 
added first and consequently the other 4 will have tea poured in first. The 

random order in which the cups were placed were not determined 
arbitrarily by human choice; but by using a game of chance. This could 
have been done in many possible ways. The lady was first asked to leave 

the room and then eight identical cards could have been prepared; marked 
as T1, T2, T3, T4 to identify those cups in which tea was added first and 
M5, M6, M7, M8 to identify those cups in which milk was added first. The 

cards were then shuffled thoroughly and placed one by one faced up on 
the table. We then had a random order of eight cards. A cup was then 
placed behind each card. If the card had a “T” on it, the cup was prepared 

with tea added first and if it had an “M”, milk was added first. The lady 
was then invited back to taste and identify accordingly. 

 

❑ Interpretation of the Experiment: 

While performing any statistical experiment, one of the first and foremost 
steps is to discuss all possible results of the experiment and to decide what 

interpretation can be made out of them. In our case, if the subject can 
correctly identify the 4 cups in which milk is added first then the remaining 4 
would automatically have tea added first. A person can choose four cups 

out of 8 in 70 ways by using the following formula through Combinatorics: 

(8 4 )
8!

4! (8! − 4!)
= 70 

This result of 70 is useful in our interpretation. A subject can divide all 8 

cups of tea correctly into two categories in 1 trial out of 70, or with a 
frequency which approaches 1 in 70 more and more nearly; the more often 
the test is performed. This odds can be much higher by enlarging the 

experiment, however, if the experiment were smaller than our present case, 
even the greatest possible success will give odds so low that it may be 
attributed to chance. 

 

❑ The Null Hypothesis: 

Fisher coined the term null hypothesis while reporting this experiment and 

stated that ‘the null hypothesis is never proved or established but is possibly 
disproved in the course of experimentation.’ The experiment is only 



 

 

performed to ‘give the facts a chance of disproving the null hypothesis.’ 
Fisher did not talk about alternative hypotheses in his approach. The null 
hypothesis must be exact and free from vagueness and ambiguity. 

In the context of the present experiment, the null hypothesis can be 
considered to be the fact that ‘the judgements given are in no way 
influenced by the order in which the ingredients have been added’ or in 

simpler terms, the lady has no ability to distinguish the cups of tea against 
the alternative one being that she has the ability to distinguish the cups. If 
the null hypothesis is rejected, the alternate hypothesis can be supposed to 

be true on the basis of the sample data; however, may not be so in reality. 

 

❑ Test Statistic: 

A test statistic is a random variable(or, any function of the random variable) 
whose value is calculated based on our sample data. It is used to determine 
whether to accept or reject the null hypothesis. In this case, the test statistic 

can be a simple count of the number of successful attempts to select the 4 
cups prepared by a specific method. This can be easily calculated using the 
method of ‘permutations and combinations’. 

Let us denote any successful attempt of identifying a cup with correct guess 

of ingredient added first by ‘×’ and any unsuccessful attempt by an ‘o’. 
Suppose the lady has 0 success, so, the combination of selections will look 
like: ‘oooo’, as is indicated by the first row of the table below. 0 success can 

be chosen out of 4 cups in 4C0 ways which equals to 1. Similarly, if the lady 
successfully chooses 1 cup out of 4, she can do that in 4C1 = 4 different 
ways as has been illustrated in row 2 of the table. Similarly, she can 

correctly choose 2 cups out of 4 in 4C2 = 6 different ways as shown in row 
3. Therefore, we can select any two correct cups and the remaining two 
incorrect cups are 6 × 6 = 36 ways. The remaining number of combinations 

can be calculated in a similar pattern. The frequencies of the possible 
number of successes are given in the final column of the table. 

 

 



 

 

 

We can clearly see that the number of successes follows a Hypergeometric 

Distribution.  

Let X be a random variable denoting the number of successes.  

Then, 

X ~ Hypergeometric(N=8, K=4, n=4); 

where, N denotes the population size which is the total number of cups i.e., 8 
in our case; K denotes the number of success states i.e., 4 cups of each type 

and n is the number of draws, i.e., 4 cups. 

 

❑ Test of Significance: 

It depends on the experimenter to decide upon the smallness of the 
probability which he would require before he can admit that his 
observations have yielded a positive result. Usually and conveniently, we 

take 5 percent as the level of significance such that we reject all those 
results from our experiment which fail to reach this standard. By using this, 
we can divide our possible results of the experiment into two classes, one 

when we accept the null hypothesis and the other when we reject it. 
However, no such selection can eliminate the whole possibility of 
coincidence. In accepting 5 percent as the level of significance, we accept 

the fact that the lady selects all the cups correctly by ‘pure chance’ in 5 
trials out of 100. 



 

 

Under the null hypothesis, the probability of selecting all four correct cups is 
1 out of 70 which is equal to 0.014 which is less than the Size of the test 
(considering 5 percent as the level of significance). However, if the lady 

correctly chooses only three cups out of 4 correctly, the probability of such 
an event will be 16 out of 70 which equals 0.22 which is way over our 
critical region. Thus, we can reject the null hypothesis only when the lady 

correctly categorizes all four cups, effectively acknowledging the lady’s 
ability to distinguish the cups at 1.4 % level of significance. Even the rare 
case of ‘3 right and 1 wrong’ could not be judged significant simply 

because it is rare, and it can occur simply because of mere chance by our 
level of significance. 

 

❑ Methods of Increasing Sensitiveness: 

One was to increase the sensitivity of the experiment, i.e., to reduce the 
possibility of success by chance, we can enlarge the experiment. On the 

other hand, instead of enlarging the experiment we can increase its 
sensitiveness by reorganising the structure. One way to do so is not by 
fixing in advance that there should be 4 cups of each kind. However, we 

can determine by some random process so as to how the subdivision should 
occur. We might allow a random process such as the flipping of a coin to 
decide which ingredient is to be added first to the tea for each of the 8 

cups. The chance of correctly classifying all 8 cups prepared by this process 
would be 1 in 28 or 1 in 256 chances and there are only 8 chances of 
classifying 7 cups right and 1 wrong. We can thus increase the sensitiveness 

of the experiment while still using the same number of cups. 

 

❖ Conclusion: 

The statistical test associated with this experiment is known as Fisher’s exact 
test. It is now employed in the analysis of 2 × 2 contingency tables. 

Although there are some points of controversy regarding this test which 
raise debate up until this day; Fisher’s test showed very conclusively that Dr. 
Bristol could indeed tell the difference between tea with milk added first 

and tea with milk added after. 
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A STUDY ON PREDICTORS OF GDP 

Sreetama Maitra, 2nd Year 

 

❖ Introduction: 

GDP is a very common word in today’s economic world. The Bureau of 
Economic Analysis gives a clear definition of the term. GDP or Gross Domestic 
Product measures the monetary value of final goods and services i.e., those 

goods that are bought by the final user, produced in a country in a given 
time period (say a quarter or a year). It counts all the output generated within 
the borders of a country. 

Here, our purpose is to analyse GDP using the Multivariate Regression 
Model. 

 

❖ Purpose: 

❑ GDP which depends on Agriculture, Service, and industry performance. 

 The study to derive the actual relationship between dependent variable 

GDP and independent variables agriculture, industry, and service sector by 
using multivariable regression model is an application of the Multivariable 
Regression Model.  

 

 

India’s GDP across the years 



 

 

❖ Methodology: 

Multivariable Regression Model technique is a widely recognised technique 

to find out the nature of relationship between the predictor and response 
variables accurately and estimate the impact of independent variables on 
dependent variables. The process of finding the mathematical function which 

describes the relationship between a dependent variable and one or more 
independent variables is regression analysis. 

 

❖ Rationale of Research: 

Most of the article in descriptive cum survey, researcher will go through 

quantitatively and analyse the highly significant data (GDP and agriculture, 
agriculture and Industry, Industry and Service sector, Service Sector and 
GDP) and establish the linear relationship between all the factors and find 

out the situation of GDP after using initial conditions. No research using the 
Multivariable Regression Model has been done as it is a newly developed 
model. So, the researcher intended to conduct the research as empirical 

validity of their own developed model. 

 

❖ Research Methodology: 

The linear relationship between four factors will be given as, 

𝐴11𝑥1

𝜎1
+  

𝐴12𝑥2

𝜎2
+ 

𝐴13𝑥3

𝜎3
+  

𝐴14𝑥4

𝜎4
= 0 

Where 𝐴11, 𝐴12, 𝐴13, 𝐴14 are cofactors of correlation coefficient matrix.  

𝜎1, 𝜎2, 𝜎3, 𝜎4 are standard deviations of the individual data. 

𝑥𝑖 = 𝑋𝑖 −  𝜇𝑖 . 

Here researchers find cofactors of correlation coefficient matrix, mean and 
standard deviation of the individual data and represent the linear 
relationship between dependent and independent variables. 

 

❖ Results and Discussion: 

❑ Linear relationship between Agriculture, Industry, Services and GDP 



 

 

The association that we have in the method and methodology used to 
interpret and analyse the data taken from the source of the bureau of 
statistics is given in table 1. 

 

Table 1: Sectoral Contribution to GDP 

 

FY Real GDP (𝑋1)   
Rs. In Billion 

Agriculture 

(𝑋2) Rs. In 
Billion 

Industry (𝑋3) 
Rs. In Billion 

Services (𝑋4) 
Rs. In Billion 

2009/10 565.76 205.52 91.29 293.27 

2010/11 587.53 214.79 95.25 303.32 

2011/12 614.64 224.73 98.11 318.52 

2012/13 637.77 227.19 100.73 336.76 

2013/14 674.23 237.52 107.84 357.69 

2014/15 694.27 240.14 109.40 374.26 

2015/16 695.69 240.68 102.44 383.06 

2016/17 749.55 253.20 115.14 414.04 

2017/18 797.15 260.33 126.16 444.06 

2018/19 850.93 273.51 135.90 476.27 

2019/20 870.25 280.59 140.29 485.76 

Total 

 

∑𝑋1 =
7737.77  

 

∑𝑋2

= 2658.20 

 

∑𝑋3

= 1222.55 

 

∑𝑋4

= 4187.01 

 

 

 

❖ Computation: 

Mean = 𝜇1 = 
∑𝑋1

𝑁
 = 

7737.77

11
 = 703.4336 



 

 

The population standard deviation σ is applicable where the entire 

population can be known along with the square root of variance. 

𝜎 = √
1

𝑁
∑(

𝑁

𝑖=1

𝑥𝑖
2 − 𝜇2) 

where xi is an individual value. 

𝜇 is the mean or expected value. 

N is the total number of values. 

Standard Deviation (𝜎1) = √
1

11
∑ (11

𝑖=1 𝑥𝑖
2 − 𝜇2) = 98.1987  

Similarly, one can also compute mean and standard deviation for 

agriculture, industry and services respectively. 

Mean (𝜇2) = 241.6545 Standard deviation (𝜎2) = 
22.4746 

Mean (𝜇3) = 111.1409 Standard deviation (𝜎3) = 
15.7210 

Mean (𝜇4) = 380.6373 Standard deviation (𝜎4) = 
64.1748 

 

A Pearson’s correlation coefficient (𝑟) whose value lies between −1 to 1 
inclusively. The formula is given by, 

𝑟 =
𝑛[∑𝑥𝑦 − (∑𝑥)(∑𝑦)]

√[𝑛∑𝑥2 − (∑𝑥)2][𝑛∑𝑦2 − (∑𝑦)2]
 

 

Using the formula for computation one can find all the association values, 

𝑟11 = 1.0000 𝑟12 = 0.9952 𝑟13 = 0.9835 𝑟14 = 0.9986 

𝑟21 = 0.9952 𝑟22 = 1.0000 𝑟23 = 0.9753 𝑟24 = 0.9833 

𝑟31 = 0.9835 𝑟32 = 0.9753 𝑟33 = 1.0000 𝑟34 = 0.9743 



 

 

𝑟41 = 0.9986 𝑟42 = 0.9833 𝑟43 = 0.9743 𝑟44 = 1.0000 

 

Now we will put these values in matrix form and the matrix is called 
correlation coefficient matrix: 

A =[
1 0.9952 0.9835 0.9986 0.9952 1 0.9753 0.9833 0.9835 

0.9753 1 0.9743 0.9986 0.9833 0.9743 1 
] 

 

 

Then the cofactors of the matrix will be as follows: 

⮚ 𝐴11 = (−1)1+1|1 0.9753 0.9833 0.9753 1 0.9743 0.9833 0.9743 1 | =
0.001382 

 

⮚ 𝐴12 =
(−1)1+2|0.9952 0.9753 0.9833 0.9835 1 0.9743 0.9986 0.9743 1 | =
−0.0004912 

 

⮚ 𝐴13 =
(−1)1+3|0.9952 1 0.9833 0.9835 0.9753 0.9743 0.9986 0.9833 1 | =
−0.0001206  

 

⮚ 𝐴14 =
(−1)1+4|0.9952 1 0.9753 0.9835 0.9753 1 0.9986 0.9833 0.9743 | =
−0.00077984 

 

 

By substituting cofactor of correlation coefficient matrix, standard deviation 

and 𝑥𝑖 = 𝑋𝑖 − 𝜇𝑖 in the first equation, we get, 

0.001382 ×
(𝑋1−703.4336)

98.1987
+ (−0.0004912) ×

(𝑋2−241.6545)

22.4746
+

(−0.0001206) ×
(𝑋3−111.1409)

15.721009
+ (−0.00077984) ×

(𝑋4−380.6373)

64.1748
= 0  



 

 

 

This is the required linear relationship between dependent variable GDP 
and independent variables agriculture, industry and service. 

 

 

❖ Conclusion: 

GDP can only be hypothetically negative. Whereas, in real life scenarios, it 
cannot be negative or even 0 as a country needs forex (foreign exchange 

market) to import which will not be available for a zero production country. 
But hypothetically, if a country has negative net exports and it is not covered 
by consumption or investment, then GDP can be negative. The negative GDP 

in the Multivariable Regression Model at initial conditions reflects that the 
stated amount will be consumed from savings of the previous year for 
operation of the economy at said hypothetical zero production. The 

Multivariate Regression Model should be applied to explain all national 
accounting indicators such as Gross National Income, National Income, Net 
National Production, Personal Income and Disposable Personal Income. 

  



 

 

RATIONALISING MUSIC USING MEASURE THEORY 

Arshiya Paul, 1st Year 
Aditya Saha, 1st Year 

 

Measure theory is the formal underpinning for how mathematicians define 
integration and probability. Statistics is founded on probability, and the 
modern formulation of probability theory is founded on measure theory. It 

is the tool mathematicians use to formalize and study the idea of mass, 
especially in the continuum. Music, on the other hand, is less straightforward 
– rather, quite mysterious for a number of reasons. Primarily, because it’s 

nearly impossible to define. What might be music to some might not be so 
for others. But even if we were to ignore its ambiguous and subjective 
nature, topics seemingly as simple as harmony and cacophony have had 

people stumped for ages. Although some might consider it sacrilege to tie 
music and maths – given that both are infinitely complex in their respective 
domains – it is possible, in some ways, to link them. 

 
Pythagoras made the first concrete argument for a fundamental link 
between music and maths. Reportedly, he experimented with the notes 

produced when plucking strings of different lengths. He found that some 
specific ratios of string lengths created pleasing combinations (harmonies) 
and others did not. 

To add more clarity: let us play a musical note of a given frequency, say 
220 Hz. Let us then choose some number ‘r’ that lies between 1 and 2, and 
play a second musical note whose frequency is ‘r’ times the frequency of the 

first note – ‘r’ * 220 Hz. 
It has been observed that for some values of this ratio ‘r’, like 1.5, the two 
notes sound harmonious together, but for others – such as √2, they sound 

cacophonous. 

 

But if we discard the obvious task of listening, how can we determine, just 

by analysing this number ‘r’, whether two separate frequencies (or 
notes), when played together, will sound harmonious or cacophonous?  

Just from the above example, we might be led to conclude that the two 

notes sound good when ‘r’ is a rational number and bad when it is 
irrational.  
Pythagoras observed several ratios of sound wave frequencies and the 



 

 

corresponding intervals between them, including 4:3 (known to musicians as 
the interval of a perfect fourth), 3:2 (a perfect fifth), and 8:5 (a perfect 
sixth). The ratio of 2:1 is known as the octave (8 tones apart within a 

musical scale). When the frequency of one tone is twice the rate of another, 
the first tone is said to be an octave higher than the second tone, yet 
interestingly the tones are often perceived as being almost identical (this is 

why we have chosen ‘r’ to range from 1 to 2). 

However, most rational numbers actually sound bad!  

For instance, the ratios 211:198, 1093:826, or 2138:1873 all lead to 

unpleasant sounds. Now, if we compare the two types of ratios, we realise 
that the issue may be that a ratio like 211:198 is more “complicated” than 
one like 4:3 (one simple way to measure the complexity of a rational 

number is to consider the size of its denominator when it is written in 
reduced form). 

 

Even still, we find that it is not possible to limit harmoniousness to rational 
numbers only. Though it may seem counter-intuitive, plenty of notes sound 
pleasant together even if the ratios between them are irrational, hence 

debunking our initial assumption.  
In fact, some instruments are tuned in terms of irrational intervals. A piano, 
in particular, is tuned such that each half-step increase corresponds to 

multiplying the original frequency by the twelfth root of 2.  

 

This means that if we were to consider a harmonious interval – say, a fifth – 

the ratio of frequencies when played on a piano will NOT be 3/2 (as we 
had defined earlier), but some power of the twelfth root of 2, in this case 
27/12, which is very close to 3/2.  



 

 

 

This method of tuning is also known as musical temperament. The reason 

why this method works (albeit reliant on irrational intervals) is because the 
powers of the twelfth root of 2 tend to remain within a 1% margin of error 
of simple rational numbers. 

 

 

 

 

To finally edit our definition of harmoniousness, we now know that two notes 
sound pleasant when the ratio ‘r’ of their frequencies is sufficiently close to 
a rational number with a low denominator.  

But it is also possible that someone with a particularly acute musical sense 
would be able to hear and find pleasure in the patterns resulting from more 
complicated ratios (like 211:198 or 1093:826), as well as numbers closely 



 

 

approximating these ratios. This raises an interesting question - suppose 
there is a musical savant who finds pleasure in all pairs of notes whose 
frequencies have a rational ratio. In that case, would she find all ratios r 

between 1 and 2 – even the irrational ones – harmonious? Because after 
all, for any given real number, we can always find a rational number 
arbitrarily close to it, just as 3/2 is close to 27/12. This is because, by 

construction ∀ 𝑟 ∈ 𝑅 and ∀𝜀 > 0, ∃ 𝑞 ∈ 𝑄 such that |𝑟 − 𝑞| < 𝜀, i.e., the 
set of rational numbers is dense in the set of real numbers (R represents 
the set of real numbers and Q represents the set of rational numbers). 

 

In this context, we have a challenging question - can we cover all the 
rational numbers between 0 and 1 with open intervals such that the sum 
of their lengths is strictly less than 1? 

The answer is yes, although the task feels impossible as rational numbers 
are dense in real numbers. So how could we possibly cover all the rational 
numbers without just covering the entire interval from 0 to 1 itself?  

Let us first enumerate all the rationals in the interval (0,1) so that they are 
countable in the following fashion - 1/2, 1/3, 2/3, 1/4, 3/4, 1/5, 2/5, 
3/5, 4/5, 1/6, 5/6, ………… and so on.  

Next, to ensure that all the rational numbers are covered, we are going to 
assign one specific interval to each rational. Now, it seems much clearer that 
the sum of their lengths can be less than 1, since each particular interval can 

be as small as we want and still cover its designated rational. In fact, the 
sum of their lengths can be any positive number! 

In order to prove this, we can just choose an infinite sum that converges to 1 

(of the form ∑∞
𝑛=1 𝑎n=1). For example, 

1/2 + 1/4 + 1/8 + 1/16 +…………. → 1, which is basically the long-

hand form of  ∑∞
𝑛=1

1

2𝑛 = 1 

We pick ε such that 0 < ε < 1, then we have 

ε/2+ ε/4+ ε/8+ ε/16+…………. → ε 

Now, let us scale the nth interval covering the nth rational number in the given 

list to ε/2n. Hence the sum of their lengths will be less than 1 as,  

∑∞
𝑛=1 𝜀/2𝑛 → 𝜀  and 0 < ε < 1. We note that our sum can be arbitrarily 

small as we have the freedom to choose the value of ε. 



 

 

Hence, it is possible to cover all the rationals in (0,1) using infinitely 
many open intervals such that the sum of their lengths is less than 1. It is 
to be noted that Lebesgue’s measure is used to determine the mass of a 

subset of real numbers and is defined as the greatest lower bound for the 
sum of lengths of open intervals covering the set. From the proof shown 
above, it can be said that the Lebesgue measure of the rational numbers 

is 0 (as ε can be as small as we want). 

 

Now, if we pick ε = 0.3 and choose one number between 0 and 1 at 

random, there is a 70% chance that it is outside those infinitely many 

intervals. For example, √2/2 is among those 70%. Hence, from our previous 
discussion,  

√2/2 is not covered.  

=> rationals which are close to √2/2 must have large denominators. 
=> if r=√2/2 then the two notes will be unpleasant to hear.  

 

Now let us pick an even smaller value of, say, ε = 0.1 and shift our setup 

from the interval (0,1) to (1,2). On observing which numbers fall among the 

special 1% covered by our tiny open intervals, we see that almost all of 
them are harmonious. For instance, the harmonious irrational number 27/12 is 
very close to 3/2 and also the interval around 4/3 is smaller but large 

enough to cover 25/12. 

 



 

 

 

 

Now let us go back to the musical savant who finds pleasure in all pairs of 

notes whose frequencies have a rational ratio. For her, the harmonious 
numbers are precisely those 1% covered by the intervals, provided her 
tolerance for error goes down exponentially for more complicated 

rationals. In other words, the seemingly paradoxical fact that a collection of 
intervals can densely populate a range while only covering 1% of its 
values, implies that harmonious numbers are rare, even for the savant. It is 

indeed surprising that the savant we defined could find 99% of all ratios 
cacophonous. 

 

It is strange and beautiful to see how these two seemingly unrelated topics 
are connected. In fact, discoveries such as these aren’t simply discoveries, 
but reservoirs of history. What we know about the mathematics of musical 

harmony has its roots in the findings of Pythagoras, who while describing his 
theory of music and mathematics, wrote: “There is geometry in the 
humming of the strings, and there is music in the spacing of the 

spheres.” We hope we have been able to explain the first part of this 
statement to some degree in this article. 

 

The second part refers to the prevalent cosmological theory in proto-
Greece at the time, which was that Earth resided at the centre of a series of 
concentric “celestial spheres.” These spheres rotated around the Earth, and 

the various objects visible in the sky were each attached to one of these 
spheres, which Pythagoras believed made music that could cure ailments. 
Along with probably being one of the first to propose the idea of music 

therapy, he predicted that the universe, indeed, produces a variety of 
sounds. 
We now know that he was right about what he said – and we wouldn’t 

without the mathematics and technology we possess today. If there is 
anything we can infer from all of this, it is that mathematics isn’t just a 
subject to study in class, but a tool that paves the way for answers from the 



 

 

beyond. As scientists of our time, it is our duty to use what we have to 
unravel the mystery and music of our universe. 
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RELATIONSHIP BETWEEN MATHEMATICS AND STATISTICS 

Manopriya Pal, 3rd Year 

 

❖ Introduction: 

 

Mathematics is a science that deals with the logic of scope, quantity & 
agreement. It is used in every step of our life as a building block. On the 

other hand, statistics is the science that collects numerical information and 

analyses it in large quantities. 

 

Studying mathematics and statistics facilitates us to develop the ability to 

think creatively, critically, strategically, and logically. We learn to structure 
and organise, carry out procedures flexibly and accurately, process and 
communicate information, and enjoy intellectual challenges. 

 

Now there's a common question about whether statistics is a part of 
mathematics or not. The answer is - Statistics is a branch of applied 

mathematics. The mathematical theories behind statistics are virtually 
supported by differential and integral calculus, linear algebra, and 
probability theory. 

 

Mathematics deals with the knowledge of space, measures, and structures in 
their rudimentary and statistics is a mathematical science, not a subfield of 

mathematics. We even have aphorisms to precise some ways in which our 
science differs from mathematics. George Cobb: "In mathematics, context 
obscures structure. In data analysis, context provides meaning." David Moore: 
"Mathematical theorems are true; statistical methods are sometimes effective 

when used with skill." That version of those aphorisms apply whenever 
mathematics models phenomena in another field solely emphasising that 
statistics is another field.  

 
Let us now focus on the difference between mathematics and statistics in 
the aspect of modelling different phenomena. 

 
Math always follows a uniform definition-theorem-proof structure. No matter 
what branch of mathematics we're studying, whether it is algebraic number 

theory or real analysis, the structure of a mathematical argument is more or 
less constant. 



 

 

 
Statistics is a field of study that deals with the collection, organisation, 
analysis, interpretation and display of data. Broadly, there are two main 

goals of statistics. The first is statistical inference: analysing the data to 
understand the processes that gave rise to it; the second is a prediction: using 
patterns from past data to predict the future. 

 
Statistical models depict the random behaviour of relationships among 
variables which are generally not considered in mathematical models. It 

uses equations which involve some observed variables and some 
disturbances that consist of all the variables, which are considered 
irrelevant for this model as well as unforeseen events. 

 

❖ Modelling the Real World: 
 
A model is a way of expressing the relationship between one set of variables 
to another set of variables through some functional form. This functional form 

may involve some unknown parameters. When the model involves a random 
error term it's called a statistical model. 
 

Both mathematics and statistics are tools we tend to use to model and 
understand the world, but they do so in very different ways. Maths creates 
an idealised model of reality where everything is obvious and deterministic; 

statistics accepts that all knowledge is uncertain and tries to form a sense of 
the data despite all the randomness. As for which approach is better –– both 
approaches have their benefits and downsides. 

 
Maths is good for modelling domains where the rules are logical and can 
be expressed with equations. One example of this is physical processes: 

simply a small set of rules is remarkably good for predicting what happens 
in the real world. Moreover, once we have figured out the mathematical 
laws that govern a system, they're infinitely generalizable — Newton's laws 

can accurately predict the motion of celestial bodies although we've only 
observed apples falling from trees. On the other hand, maths is awkward 
at handling error and uncertainty. Mathematicians produce a perfect 

version of reality and hope that it's close enough to the real thing. It uses the 
model of the type: 
 

Y = ɑ + βx 

 



 

 

where x is the explanatory variable, Y is the dependent variable and ɑ, and 

β are the model parameters. We see that it doesn't involve any error term 

that takes into account the effect of extraneous variables or includes the error 
of choosing the functional form. 

 
Statistics come into the picture when the rules of the game are uncertain. 
Instead of ignoring the error, statistics embraces uncertainty. Every value has 

a confidence interval where we can expect it to be right about 95% of the 
time, but we can never be 100% sure about anything. But given enough data, 
the correct model will separate the signal from the noise. This makes statistics 

a strong tool when there are many unknown confounding factors, like 
modelling sociological phenomena or anything involving human decisions. 
 

The drawback is that statistics only works on the sample space where you 
have data; most models are bad at extrapolating past the range of data 
that it's trained on. In other words, if we use a regression model with 

information about apples falling from trees, it'll eventually be pretty sensible 
at predicting other apples falling from trees, but it fails to predict the path 
of the moon. Thus, maths helps us to understand the system at a deeper, more 

elementary level than statistics. 
 
Statistics work with real data, which tends to be messy and doesn't lend 

itself easily to clean rigorous definitions. For example, we consider the 
concept of an "outlier". Many statistical methods behave badly when the 
data contains outliers, so it's a standard practice to identify outliers and 

remove them. But what exactly constitutes an outlier depends on several 
criteria, like how many data points we are having, how far it is from the 



 

 

rest of the points, and what kind of model we want to fit.

 

In the above plot, 4 points are potential outliers. We remove them, or keep 
them, or maybe remove one or two of them that depend upon us. 

For another example, consider p-values. Usually, if a p-value is under 0.05, 

it may be thought of as statistically significant. But this value is just a guideline, 
not a law –– it's not like 0.049 is properly significant and 0.051 is not. So to 
consider whether it is significant or not is up to us.  

Take another example: heteroscedasticity. This means the variance is not 
equal for various components of the dataset. Heteroscedasticity is not good 
because a lot of models, like the classical linear model, assume that the 

variance is constant, and when this assumption is profaned then we'll get 



 

 

wrong results, so we need to use a different model.

 

Is this data heteroscedastic, or does it seem like the variance is uneven as 
there are so few points to the right of 4? Is the downside serious enough that 
fitting a linear model is invalid? There's no correct answer, we've to use our 

judgement.  
 
 

 
 
 

 



 

 

Another example: consider a linear regression model with two variables X 
and Y. When we plot the points on a graph, we should expect the points to 
roughly lie on a straight line. Not exactly a line, of course, just roughly 

linear. But what if we get this:

 
There is some evidence of non-linearity, but how much "bendiness" can we 
accept before the data is not "roughly linear" and we have to use a different 
model? Once more, there's no correct answer, and we have to use our 

judgement. 
 
We can see in statistics unlike maths, there is no universal procedure which 

will tell whether or not the information satisfies these assumptions. 
 



 

 

 
 
 

Here are some common things that statistical models assume: 

1) A stochastic variable is drawn from a normal (Gaussian) distribution. 
2) Two random variables are independent. 

3) Two random variables satisfy a linear relationship. 
4) Variance is constant. 

 

The data isn't going to exactly fit a normal distribution, so all of these are 
approximations. In practice, we may have samples from exponential or log-
normal distributions. Various configurations in the games of cards were of 

special interest to gamblers, these are count data and Poisson distribution is 
a classic choice here. Interest could be in proportion- the presence or absence 
of disease. Here Bernoulli distribution is a classic choice. If our purpose is to 

know the number of diseased persons, here Binomial distribution is 
appropriate. 
 

A proverb in statistics goes: "all models are wrong, but some are useful". But 
if data deviates considerably from the model assumptions, then the model 
breaks down and we get garbage results. For example, when we use the 

following model: 
 

Y = ɑ + βx +e 

 

We usually assume that the conditional mean of error is zero that is E(e|x) 
=0. Also, we assume that Y values are distributed symmetrically around 
their respective (conditional) mean values and the regression line passes 

through these conditional mean values. Otherwise, there is no meaning in 
using such a model. So, there is no universal black-and-white procedure to 
decide if data is normally distributed, at some point, we have to step in and 

apply our judgement. 
 
 

❖ Conclusion 

Mathematics follows a rigid theorem and proof structure throughout the 
complete discipline. There are well-defined facts which are laid down as a 
part of proven human knowledge which has minimal scope for modification. 



 

 

However, Statistics is a discipline where people handle real-life data. This 
factor makes this field of study more abstract, where individuals have to 
develop newer solutions to issues which will be novel. 

Mathematics is a very broad domain of study, encompassing just about all 
quantitative disciplines whereas Statistics is a specific discipline within it, 
deeply related to Applied Mathematics. Mathematical theory is rarely 

informative about functional forms. We have to use statistical methods to 
choose the functional form, as well. 

Statistics is strictly associated with physical data and its interpretation; hence 

it has a restricted scope. Mathematics, however, also deals with abstract 
ideas which may be metaphysical. Hence, Mathematics has a much wider 
scope than Statistics. 
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ROBUSTNESS IN ESTIMATION THEORY 

Tamasha Dutta, 3rd Year 
 

❖ Introduction: 

In Statistical theory, Robustness of an estimator is defined as the problem of 
finding estimators that are likely to have small departures from the assumed 
statistical model, for a wide range of probability distributions, especially for 

non-normal distributions. 

The robust statistics was first introduced by John Tukey (in 1960), then, over 
time it has been developed by Peter Huber (in 1964), and Frank Hampel (in 

1971). 

Robust statistical methods have been introduced for many problems, like, the 
estimation of parameters, for different regression models, probabilistic 

model, etc. The basic objective of this procedure is to remove the effect of 
outliers in a dataset. Also, this procedure helps us to provide a good 
observation of the parameters, when there are some small departures from 

a specified distribution. 

In Statistical theory, there are many given definitions of robustness. A 
robust statistic is defined as the resistant to the errors, produced due to the 

deviations from assumption, i.e., if the assumptions only occurred, 
approximately, then the robust estimator will also be having an efficiency, 
and small bias, also the bias is tending towards 0 as the sample size tends 

towards infinity. 
 
 

❖ Measurements of Robustness: 
 
To measure robustness, there are generally, three methods –  
1) The Breakdown Point Method 

2) The Sensitivity Curve Method 
3) The Influence Function Method 
 

❑ The Breakdown Point Method: 
 

The breakdown point method of an estimator is defined as the smallest 
fraction of the arbitrarily large observations or the outliers, in the given 
dataset that overestimates the estimator. 



 

 

According to the theory, the higher the breakdown point value of the 
estimator, the more robust it is. 

❑ The Sensitivity Curve Method: 

The sensitivity curve method is defined as the measure of the effect of a single 
outlier on the estimator.  

This method is used to compute the difference between the estimate value for 

a given sample (𝑥1, 𝑥2, … , 𝑥𝑛) and the estimate, when a particular 
observation (x) is added to the sample. The difference is obtained by the 
fraction of contamination 1/(n+1), where n is the sample size.  

Hence, for a given estimator 𝜃, the sensitivity curve function is defined as, 

SC (𝑥1, 𝑥2, … , 𝑥𝑛 , 𝜃) = 
[𝜃(𝑥1,𝑥2,…,𝑥𝑛,𝑥) − 𝜃(𝑥1,𝑥2,…,𝑥𝑛)]

1

(𝑛+1)

  

An estimator is considered as a robust estimator if its sensitivity curve function 
values are bounded. 

 

❑ The Influence Function Method: 

The influence function method is defined as the asymptotic part of the 
sensitivity curve. It does not depend on any finite set of observations, but 
depends on the specific distribution of the estimator.  

The influence function measures the changes in estimation when a certain 
contamination is added to the distribution. The contaminated function of the 
distribution (f) can be given as, 

I = (1 − 𝜉) × 𝑓 +  𝜉 × 𝛿𝑥 

Here, 𝛿𝑥 is the Dirac Measure, which is 1 at the point x, and 0 otherwise. 

Now, the influence function, is given as, 

IF (𝑥, 𝑓, 𝜃) = 
𝜃(𝐼)− 𝜃(𝑓)

𝜉
 ) 

An estimator is considered as a robust estimator if the influence function 

values are bounded. 

 

❖ Robust Estimate for Central Tendency: 



 

 

 

1) Median: 

We know that, median is the middle most value of a certain dataset. For a 

given set of observations, say, (𝑥1, … , 𝑥𝑛), median is 𝑥(𝑛+1)/2, for n to be 

odd, and, (𝑥𝑛/2 + 𝑥(𝑛+2)/2)/2, for n to be even. 

Now, according to theory, it is stated that the breakdown point of the median 
is 0.5, i.e., the median can resist 50% of the outliers, without creating any 
discrepancy in the estimation. Thus, this measure can also be considered as a 

robust measure of central tendency. 

 

2) Trimmed Mean: 

We know that, trimmed mean is the simple average of the sampled data, 
computed by ignoring the smallest and the largest observations. Thus, in 
presence of outliers, the trimmed mean ignores the outlier values and then 

computes the simple mean. Thus, this measure can also be considered as one 
of the robust measures of central tendency. 

 

❖ Robust Estimate for Dispersion: 

 

1) InterQuartile Range: 

For a set of observations, the InterQuartile Range (IQR) is defined as, IQR = 

𝑄3 − 𝑄1, where, 𝑄𝑖 is the ith quantile of the set of observations; i = 1, 3, here. 

Similarly, as median, 𝑄3 – 𝑄1 has respectively, 25% outlier resistant power, 
i.e., the breakdown point of IQR is 0.25. 

Thus, in presence of outliers, the IQR is able to ignore the outlier values 25%. 
Thus, this measure can also be considered as one of the robust measures of 
dispersion. 

 

❖ Properties of Robust Estimator: 

1) The Robust estimators provide us with the largest possible breakdown point. 

2) The Robust estimators provide us with the highest possible efficiency. 



 

 

3) The Robust estimators provide us a smooth influence function. 

 

❖ Example: 

For example, let us consider the dataset {5, 2, 9, 5, 11, 18, 3, 10, 19, 13}, 
obtained from Binomial (20, 0.5) distribution, without considering any 

replacement of value. 

Now, according to theory, mean is not a robust statistic, while median is a 
robust statistic of central tendency. 

Now, the mean and median of the data is 9.5. 

Now, if we add a particular outlier, say 1000, then the mean is 99.5, while 
the median is coming out as 10, nearly to 9.5. 

Thus, according to the Breakdown Point Method, the breakdown point of the 

sample mean is nearly 1/11. Also, as n → ∞, the breakdown point of the 
sample means is tending towards 0, which is the worst possible case, here. 

Also, in case of median, it is the middle most value of the sample, thus, taking 

any random sample, Sensitivity Curve value will always be bounded, but, for 
mean, the difference between the sample mean and the new sample mean 
may or may not be bounded. Here, for mean, that difference is nearly 90, 

which is a high value.  

Again, using the Influence Curve function, we must conclude the same comment 
as for Sensitivity curve. 

Other than this, the robust estimator helps us to estimate the parameters 
(Scale and Location Parameters) of a distribution. 

 

❖ Real life examples of robust estimation: 

In 2004, Simon Newcomb considered a data set, which is related to the 

speed of light measurements, in the Bayesian Data Analysis.  

According to the theory, the plot of the data looked more or less to be 
normally distributed, with two obvious outliers, which had a very large effect 

on the mean, taking mean towards them, and took the plot away from the 
centre of the data.  

In that case, if the mean is taken as the measure of the location parameter of 

the data, then in the presence of outliers, the mean is absurd. Also, due to the 



 

 

central limit theorem, the distribution of the mean is known to be 
asymptotically normal, but in presence of outliers the distribution of the mean 
may be non-normal, even for a fairly large amount of data. Thus, mean is 

not efficient, in the presence of outliers and the measurement of the location 
parameter is also absurd. 

Now, we came to know that, the trimmed mean is a simple robust estimator 

of location parameter, which deletes around 10% percentage of 
observations, from each end of the data, and then computes the mean in the 
general way.  

 

 
 
 

 

 

 

Figure 1: Plots of the Speed of Light data, obtained by Simon Newcomb, for 10000 sample 

data - (a) Density Plot of the Speed of Light data; (b) Q-Q plot of the Speed of Light data; 

(c) Plot of the Distribution Mean of of the Speed of Light data; (d) Plot of the 10% Trimmed 

Mean of of the Speed of Light data. 



 

 

Thus, the distribution of mean is clearly wider than that of the 10% trimmed 
mean. Also, according to theory, the distribution of the trimmed mean comes 
to be approximately normal distribution. 

Here, it is known that the trimmed mean performs well in comparison to the 
arithmetic mean.  

Thus, these measurements of robustness of an estimator are very helpful in 

real-life data analysis. 
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DRIVING INTO THE UNKNOWN: HOW STATISTICS AND PROBABILITY 
HELP AUTONOMOUS VEHICLES TO HANDLE UNCERTAINTY 

Ranit Sarkar, 2nd Year 
Soham Choudhury, 2nd Year 

 

❖ Introduction: 

An autonomous vehicle, or a driverless vehicle, is one that can operate itself 
and perform necessary functions without any human intervention, through its 

ability to sense its surroundings. In this article, we'll explore how statistics and 
probability are helping to drive the development of autonomous vehicles, 
and how they are essential for ensuring the safety and reliability of these 

innovative technologies. 

Autonomous vehicles use a variety of sensors, such as cameras, lidar, and 
radar, to gather data about the environment. This data is then processed 

using computer vision algorithms, which help the vehicle to identify and 
classify objects in the environment, such as pedestrians, vehicles, and traffic 
signs. By interpreting this data, the autonomous vehicle can make informed 

decisions about how to safely navigate through its environment. 

 

❖ Algorithms Used in Autonomous Vehicles: 

Deep learning algorithms, such as convolutional neural networks (CNNs) 
and recurrent neural networks (RNNs), are widely used in autonomous 

vehicles for a variety of tasks such as object detection, semantic segmentation, 
image recognition, and control. Among these algorithms, YOLO (You Only 
Look Once) is considered to be one of the best object detection algorithms 

for autonomous vehicles, due to its speed, accuracy, and real-time 
performance. However, it is important to note that there are other object 
detection algorithms such as Faster R-CNN, Single Shot MultiBox Detector 

(SSD), Mask R-CNN, Gradient Boosting, k-Nearest Neighbours (k-NN) and 
RetinaNet which are also widely used and are considered to be competitive 
alternatives that can be utilised in autonomous vehicles. The choice of 

algorithm will depend on the specific requirements of the application and the 
sensor data available. 

 

❑ YOLO: 



 

 

YOLO (You Only Look Once) is a real-time object detection algorithm. It is a 
convolutional neural network (CNN) based algorithm that is able to detect 
and classify objects in an image or video stream. In autonomous vehicles, 

YOLO is used to detect and track objects in the vehicle's environment, such as 
other vehicles, pedestrians, and traffic signs. YOLO is also used to process 
images and video from cameras mounted on the vehicle, such as from 

cameras used for lane detection, traffic sign recognition, or obstacle 
detection. The algorithm detects and classifies objects in real-time, making it 
suitable for use in autonomous vehicles, where fast and accurate object 

detection is crucial for safe navigation. Additionally, YOLO is used to perform 
semantic segmentation, which is the process of classifying each pixel in an 
image to a specific class. This is useful for tasks such as free space detection 

and driveable area detection. 

In this article, we will implement the YOLO algorithm using the OpenCV 
library. 

 

❑ OpenCV: 

OpenCV is an open-source computer vision library that includes several 

hundreds of computer vision algorithms. It is used for image processing, object 
detection, and more. In autonomous vehicles, OpenCV is commonly applied 
for tasks such as object detection, image recognition, and depth estimation. It 

provides a variety of other functions, such as edge detection, feature 
extraction, and image filtering, that are used to extract features from images 
and videos, crucial for autonomous navigation. 

 

❑ Difference between YOLO and OpenCV: 

OpenCV and YOLO are related to each other as they are both used for 

computer vision tasks, specifically object detection. However, they are not the 
same. OpenCV is a computer vision library that can be used to implement 
YOLO and other object detection algorithms. YOLO is a specific object 

detection algorithm that can be implemented using OpenCV or other libraries 
that are used for image processing and object recognition. 

 

❑ How YOLO works – Graphical Example: 



 

 

YOLO helps to detect and classify objects in an image or video frame in a 
single pass, allowing for fast and efficient processing. It works by dividing 
the image or video frame into a grid of cells and using machine learning 

techniques to predict the likelihood that each cell contains an object. This 
allows YOLO to process the data very efficiently, making it an attractive 
choice for use in autonomous vehicle applications where fast response times 

and low computational overhead are important. 

 

 

 

❖ Implementation of YOLO Algorithm using OpenCV in Python: 

To implement the YOLO algorithm using OpenCV, we need three files viz -
’yolov3.weights’, ‘yolov3.cfg’ and “coco.names” . First, we are going to load 
the model using the function “cv2.dnn.ReadNet()”. This function loads the 

network into memory and automatically detects configuration and framework 
based on file name specified. 

 

import cv2 
import numpy as np 
# Load YOLO model 

net = cv2.dnn.readNet("yolov3.weights", "yolov3.cfg") 
classes = [] 
with open("coco.names", "r") as f: 

    classes = [line.strip() for line in f.readlines()] 
layer_names = net.getLayerNames() 
output_layers = [layer_names[i[0] - 1] for i in 

net.getUnconnectedOutLayers()] 
colors = np.random.uniform(0, 255, size=(len(classes), 3)) 



 

 

 
# Load image 
img = cv2.imread("image.jpg") 

img = cv2.resize(img, None, fx=0.4, fy=0.4) 
height, width, channels = img.shape 
# Detect objects 

blob = cv2.dnn.blobFromImage( 
    img, 0.00392, (416, 16), (0, 0, 0), True, crop=False) 
net.setInput(blob) 

outs = net.forward(output_layers) 
# Show detections  
class_ids = [] 

confidences = [] 
boxes = [] 
for out in outs: 

    for detection in out: 
        scores = detection[5:] 
        class_id = np.argmax(scores) 

        confidence = scores[class_id] 
        if confidence > 0.5: 
            # Object detected 

            center_x = int(detection[0] * width) 
            center_y = int(detection[1] * height) 
            w = int(detection[2] * width) 

            h = int(detection[3] * height) 
            x = center_x - w / 2 
            y = center_y - h / 2 

            boxes.append([x, y, w, h]) 
            confidences.append(float(confidence)) 
            class_ids.append(class_id) 

# Perform non-maximum suppression 
indexes = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) 
# Draw bounding boxes 

for i in range(len(boxes)): 
    if i in indexes: 
        x, y, w, h = boxes[i] 

        label = str(classes[class_ids[i]]) 
        color = colors[class_ids[i]] 
        cv2.rectangle(img, (x, y), (x + w, y + h), color, 2) 

        cv2.putText(img, label, (x, y + 30), 
                    cv2.FONT_HERSHEY_SIMPLEX, 1, color, 3) 



 

 

# Show image 
cv2.imshow("Image", img) 
 

Output of the program will look like this:  

 

 

 

❖ Application of Statistics and Probability Distribution in Modelling 
Autonomous Vehicles: 

Statistics plays a central role in deep learning, especially in the fields of 

computer vision and image processing. Deep learning algorithms, such as 
those used in YOLO, rely on statistical techniques to analyse and process 
images and videos, and extract useful information from them. 

Probability distributions are a useful tool for modelling and predicting the 
likelihood of various outcomes in autonomous vehicles. These distributions 
allow developers to analyse and interpret the data collected by the vehicle's 

sensors, and to make informed decisions based on that data. For example, a 
probability distribution is used to model the likelihood of a pedestrian 
crossing a particular road at a certain time of the day. By analysing data on 

pedestrian traffic patterns and other relevant factors, the probability 
distribution is used to predict the likelihood that a pedestrian will be present 
at a particular location at a particular time. If the probability of a pedestrian 

being present is high, the autonomous vehicle may choose to slow down or 
come to a stop to avoid a potential collision. 

 

❖ Use Of Statistics in YOLO Algorithm: 



 

 

YOLO uses statistical techniques, majorly probability distributions. The 
algorithm divides an image into a grid of cells and assigns each cell a 
probability of containing an object. Then it uses probability to determine 

which cells are most likely to contain an object. YOLO also uses the technique 
of bounding boxes. To calculate the location and size of bounding boxes 
around each detected object statistical techniques are useful. These bounding 

boxes are used to enclose and identify the objects in the image.   

 

 

 

❖ Significance of Mahalanobis distance in Autonomous Cars: 

The Mahalanobis distance is a statistical measure of distance between a point 
and a distribution. It considers the covariance of the data, allowing for a 
more accurate assessment of the distance between the two. 

For autonomous vehicles, the Mahalanobis distance is used to measure the 
similarity between a detected object and a known object, like a pedestrian 
or a traffic sign. The likelihood that the detected object is the same as the 

known object is determined by the autonomous vehicle by calculating 
Mahalanobis distance between the two objects. This information is very 
helpful for autonomous cars about how to respond to the detected object. 
Suppose the Mahalanobis distance between the detected object and a known 

pedestrian is low. Then the car might slow down and stop to avoid a potential 
collision. 

 



 

 

❖ Conclusion: 

Statistics and probability are used in autonomous vehicles to make predictions 

and decisions based on data. Advantages of using these techniques include 
improved safety and efficiency, as well as the ability to handle complex and 
dynamic environments. However, there are also potential disadvantages, such 

as the risk of errors or biases in the data and the possibility of the autonomous 
vehicle behaving unexpectedly in certain scenarios. Additionally, there is also 
a risk of over-reliance on data and automation, which can lead to decreased 

awareness and decision-making skills among human operators. 

In India, several companies and organizations are working on autonomous 
cars and are testing the vehicles on public roads. The Indian government has 

approved testing of autonomous cars in several cities, and companies such as 
Tata Motors and Ola are working on autonomous car projects. It is likely that 
autonomous cars will continue to advance and become more widespread in 

the future. However, there are still many challenges to overcome in terms of 
technology, regulation and public acceptance. It is difficult to predict exactly 
when and how autonomous cars will be fully deployed and adopted. 
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THE MONTY HALL PROBLEM 

Dishari Datta, 2nd Year 

 

 
Who would have thought that an old TV game show could inspire a statistical 

problem that has tripped up mathematicians and statisticians with PhDs? The 
Monty Hall problem has confused people for decades. In the game show, let 
us Make a Deal, Monty Hall asks you to guess which closed door a prize is 

behind. The answer is so puzzling that people often refuse to accept it!  

❖ Understanding the Monty Hall Problem: 

The Monty Hall Problem is a counter-intuitive statistics puzzle: 
 

⮚ There are 3 doors, behind which are two goats and a prize. 

⮚ You pick a door (call it door A). You are hoping for the prize of course. 

⮚ Monty Hall, the game show host, examines the other doors (B & C) and opens 
one with a goat. (If both doors have goats, he picks randomly.) 
 
The role of the host is as follows, under standard assumptions: 

⮚ The host must always open a door that was not picked by the contestant. 

⮚ The host must always open a door to reveal a goat and never the prize. 

⮚ The host must always offer the chance to switch between the originally chosen 
door and the remaining closed door. 

 

Here is the game: Do you stick with door A (original guess) or switch to the 

unopened door?  

❖ Simple Solution! 
 

❑ Understanding The Game Filter:  

Instead of the regular game, imagine this variant: 

⮚ There are 100 doors to pick from in the beginning 



 

 

⮚ You pick one door 

⮚ Monty looks at the 99 others, finds the goats, and opens all but 1 

Do you stick with your original door (
1

100
), or the other door, which was 

filtered from 99?  
 

It is a bit clearer: Monty is taking a set of 99 choices and improving them by 
removing 98 goats. When he has done, he has the ‘top’ door out of 99 for 
you to pick. 

❑ Now back to our original problem: 

 

Let us begin with a simple diagram: 
 
 

 
 
 

 
These are the probabilities we face when we are confronted by these three 

doors: the probability of one door being the door which hides a prize is 
1

3
 

and the probability that it is not the prize-hiding door is 
2

3
. Look at the 

following representation is a modified diagram. 

 



 

 

 

 

The probability that any two doors do hide a prize is 
2

3
, and the probability 

that any one door does not hide a prize is 
2

3
. They are the same because the 

sum of the probabilities for individual doors containing a prize must be one. 

After you have selected a door, Monty Hall then opens one of the two 
remaining doors, and reveals to you that it does not contain a prize. Once 
he has done this, we can modify our diagram a bit:  

 

 

Here you can see that he has eliminated one of the three doors from 
consideration. Note that he has not just eliminated any random door but has 

eliminated one of the doors which does not hide a prize. 



 

 

Case 1: You did select the correct door initially: Since you will be right one-
third of the time, that means that if you stay with your first choice, you will 
get the prize one-third of the time. 

Case 2: Your initial choice is incorrect: You are going to choose the wrong 

door 
2

3
 of the time. Your initial choice has only one chance in three of being 

right – the remaining door has two chances in three. 

 

❖ Solution using Bayes’ Theorem: 
 

Initially, the prize is equally likely to be behind any of the three doors: the 
odds-on door 1, door 2, and door 3 are 1:1:1. This remains the case after 
the player has chosen door 1, by independence. According to Bayes' rule, 

the posterior odds on the location of the prize, given that the host opens door 
3, are equal to the prior odds multiplied by the Bayes factor or likelihood, 
which is, by definition, the probability of the new piece of information (host 

opens door 3) under each of the hypotheses considered (location of the 
prize). Now, since the player initially chose door 1, the chance that the host 
opens door 3 is 50% if the prize is behind door 1, 100% if the prize is behind 

door 2, 0% if the prize is behind door 3. Thus, the Bayes factor consists of 

the ratios 
1

2
:1:0 or equivalently 1:2:0, while the prior odds were 1:1:1. Thus, 

the posterior odds become equal to the Bayes factor 1:2:0. Given that the 
host opened door 3, the probability that the prize is behind door 3 is zero, 
and it is twice as likely to be behind door 2 than door 1. Given that the prize 

is not behind door 1, it is equally likely that it is behind door 2 or 3. Therefore, 
the chance that the host opens door 3 is 50%. Given that the prize is behind 
door 1, the chance that the host opens door 3 is also 50%, because, when 

the host has a choice, either choice is equally likely. Therefore, whether the 
prize is behind door 1 or not, the chance that the host opens door 3 is 50%. 
The information “host opens door 3” contributes a Bayes factor or likelihood 

ratio of 1:1, depending on whether the prize is behind door 1 or not. Initially, 
the odds against door 1 hiding the car were 2:1. Therefore, the posterior 
odds against door 1 hiding the car remain the same as the prior odds, 2:1. 

https://en.wikipedia.org/wiki/Bayes_Theorem


 

 

 

❖ Direct calculation: 
 

Consider the event 𝐶𝑖 , indicating that the prize is behind door number 𝑖, takes 

value 𝑋𝑖 , for the choosing of the player, and value 𝐻𝑖 , for the host opening 

the door. The player initially chooses door 𝑖 = 1, 𝐶 = 𝑋1 and the host opens 

door 𝑖 = 3, 𝐶 = 𝐻3 . 

In this case, we have: 

𝑃(𝐶1, 𝑋1) =
1

2
 

𝑃(𝐶2, 𝑋1) = 1 

𝑃(𝐶3, 𝑋1) = 0 

𝑃(𝐶𝑖) =
1

3
 

𝑃(𝐶𝑖 , 𝑋𝑖) = 𝑃(𝐶𝑖)𝑃(𝑋𝑖) 

𝑃(𝑋1) =
1

2
 

𝑃(𝑋1) =
1

2
 because this expression only depends on 𝑋1, not on any 𝐶𝑖 . So, in 

this particular expression, the choosing of the host does not depend on where 

the car is, and there are only two remaining doors once 𝑋1 is chosen (for 

instance, 𝑃(𝐻1|𝑋1) = 0) and 𝑃(𝐶𝑖 , 𝑋𝑖)  =  𝑃(𝐶𝑖)𝑃(𝑋𝑖) because 𝐶𝑖 and 𝑋𝑖 
are independent events (the player does not know where the car is in order 
to make a choice). 

Then, if the player initially selects door 1, and the host opens door 3, we 
prove that the conditional probability of winning by switching is: 

 𝑃(𝐻3, 𝑋1) =
2

3
  

 

From the Bayes' rule, we know that 𝑃(𝐴, 𝐵) = 𝑃(𝐴|𝐵)𝑃(𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴). 
Extending this logic to multiple events, for example A, B and C, we get that 
we can play with the different subsets of {A, B, C} to calculate the probability 
of the intersection, as a tool to simplify the calculation of our conditional 

probability: 

𝑃(𝐴, 𝐵, 𝐶) = 𝑃(𝐵, 𝐶)𝑃(𝐵, 𝐶) 

https://en.wikipedia.org/wiki/Bayes%27_rule


 

 

= 𝑃(𝐴, 𝐶)𝑃(𝐴, 𝐶) 

= 𝑃(𝐶|𝐴, 𝐵)𝑃(𝐴, 𝐵) 

= 𝑃(𝐴, 𝐵|𝐶)𝑃(𝐶) 

= 𝑃(𝐴, 𝐶|𝐵)𝑃(𝐵) 

= 𝑃(𝐵, 𝐶|𝐴)𝑃(𝐴) 

In our case, since we know that 𝑃(𝐻3|𝐶2, 𝑋1) = 1, we are in luck: 

𝑃(𝐻3, 𝑋1) =
𝑃(𝐶2,𝐻3,𝑋1)

𝑃(𝐻3,𝑋1)
=

𝑃(𝐻3|𝐶2,𝑋1)𝑃(𝐶2,𝑋1)

𝑃(𝐻3,𝑋1)
=

𝑃(𝐶2)𝑃(𝑋1)

𝑃(𝐻3|𝑋1)𝑃(𝑋1)
= 

1/3

1/2
=

2

3
 

❖ CONCLUSION: 

So, to answer our initial question: Should we switch? Yes. Switching doors 
substantially increases our probability of winning the prize.  
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IMPORTANCE OF DATA IN FOOTBALL: A PEEK 
INTO FIFA WORLD CUP 2022 
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❖ Introduction: 

Numbers are everything, aren’t they? Any player in any sport can be claimed 
to be the best among his competitors if he has better statistics than his other 

competitors. When it comes to football, players are judged based on the 
number of goals and assists (the final pass by a player that helps to score a 
goal) they provide during matches. However, as time passed, new methods 

were introduced for a better understanding of a player’s performance with 
the help of numbers. Expected goals (xG), Expected assists (xA), Big 
chances created by the player are some of the widely used factors to judge 

the performance of a particular player or a team. 

 

❑ Expected Goals(xG): 

Expected goals (xG) measures the quality of a shot using statistical models 
based on several variables such as shot angle, assist type, distance from goal, 
whether the shot was a header, whether it was defined as a big chance, etc. In 

simple words, xG tells us the probability that a shot is likely to be converted 
into a goal. The closer the shot is to the goal, the higher the xG. The wider 
the angle from the goal, the lower the xG. Some xG models are built using 

a logistic regression model. An xG model uses historical information from 
thousands of shots with similar characteristics to estimate the probability that 
the shot will result in a goal. For example, a shot taken from the 6-yard box 

might have a high xG value of 0.8 because it is more likely to go into the 
goal than a shot that is taken from outside of the penalty box, which might 
have an xG value of 0.4. A penalty kick has an xG value of 0.76. An xG 

value of 1 means a sure goal, which does not exist. Sometimes the presence 
of defenders is also considered when calculating xG, as the presence of 
defenders also affects the probability of a shot being converted into a goal. 

The xG value helps us a lot in assessing the qualities of a striker. 

Let us consider two players, A and B, who have scored 10 goals each. We 
may think that they are equally good as they scored the same number of 

goals. Suppose player A has scored all the goals through set-pieces (free-



 

 

kicks, corner kicks), and player B has scored just tap-ins (a simple shot into 
the goal from close range, without opposition). Then player A’s goal tally will 
be higher than his xG value, knowing that he has scored from difficult 

positions and tighter angles. Hence, we may conclude that player A is better 
in terms of scoring goals. 

 

❑ Expected Assists(xA): 

Expected assists(xA) measures the likelihood that a given pass will become 
an assist with the help of statistical models, like logistic regression models. It 

considers several factors such as the type of pass, the pass endpoint, the length 
of the pass, etc. Like the xG model, an xA model also uses historical 
information from thousands of passes in similar conditions to estimate the 

probability that the pass will convert into an assist. Every pass made by a 
player is assigned some xA value, though most of the time it is low as not all 
passes made by a player can generate chances. For example, a pass made 

by a player in the penalty box is more likely to be scored and will have a 
higher xA value, compared to a pass that is made outside the penalty area. 
The xA value is also affected by some other factors, such as the finishing 

location of the pass and the type of pass. xA helps us to understand how 
creative a player is, regardless of the assists he provides in a measured 
number of games. In the FIFA World Cup 2022, for example, German 

youngster Jamal Musiala had an xA value of 1.6 but no assists. This shows he 
had been let down by his teammates when it came to notching assists. 

 

❑ Big Chances: 

“Big Chances” in football refers to a situation where a player should 
reasonably be expected to score goals, usually from a very close range when 

the ball has a clear path to goal. Providing an opportunity where the 
receiving player is expected to score is defined as creating a Big Chance. 

Let us look through an example in order to understand how xA, xG, Big 

Chance created, etc., provide information that helps in assessing a player’s 
performance. 

 

❖ Was the Golden Ball Award in FIFA World Cup 2022 justified?   



 

 

Father of modern football Johan Cruyff once said about Leo Messi, “Still, at 
only 20, he has a little bit to learn about the game: when to provide the right 
pass and when to dribble. When he fully understands that, he won’t just get 

one Golden Ball (Ballon d’Or), he’ll have an entire collection by the time his 
career ends.” His prediction came true, as Messi has won seven Ballon d'Ors 
to date. Though our discussion is not that, we are focusing on whether Messi’s 

statistics justify him receiving the Golden Ball award at the FIFA World Cup 
2022. 

To award the Golden Ball, a shortlist is drawn up by the FIFA technical 

committee, and the winner is voted for by representatives from the media. 
We do not know what measures FIFA uses to shortlist the players. We feel 
that xG, xA, and Big Chance created are good measures to assess one 

player’s attacking performance. We have collected data on the players’ xG, 
xA, Goals, Assists, and Big Chance created by the players in the 
tournament and plotted them graphically to understand their performance. 

 

Figure-1: xG vs Goals 

 

From Figure-1, we can see that the xG of Lionel Messi is 6.6, but after the 
tournament came to an end, Messi ended his World Cup goal tally of 2022 

with 7 goals. As a result, Messi clearly outperformed his xG. On the other 
hand, Mbappe had scored a mammoth of 8 goals with only 5.3 xG. 
Despite having an xG of 1.9, Musiala had failed to score even a single 

goal. The Dutch footballer Weghorst scored 2 goals with a very low xG of 
0.2 and forced the quarterfinal match between Argentina and the 
Netherlands to go to extra time. 



 

 

 

 

Figure-2: xA vs Assists. 

 

From Figure-2, it can be seen that Perisic had provided 3 assists with just 

0.6 xA, i.e., he overperformed his xA. And the Argentine superstar Lionel 
Messi, who had a very good tournament ended up with 3 assists with 1.9 
xA, even though he had provided an outstanding assist with a low xA 

against Netherlands. On the other hand, Griezmann and Musiala provided 
3 and 0 assists, respectively, with their corresponding xA of 3.6 and 1.6. 
So, they underperformed their xA. 

 

Figure-3: Assists vs Goals. 

 



 

 

From Figure-3, it is seen that Mbappe and Messi had 10 G+A (Goals + 
Assists) which is a great contribution to their respective teams. On the other 
hand, Kane and Bruno Fernandes had provided 5 G+A. Despite having a 

good xG and xA, Musiala ended up with 0 G+A. 

 

 

Figure-4: Big Chance created by their team vs Big Chance created by the 

players. 

 

From Figure-4, Lionel Messi created the 7 big chances out of 14 big chances 

created by Argentina. And Griezmann and Bruno Fernandes had created 7 
and 5 big chances, respectively, out of 18 and 12 big chances created by 
France and Portugal. Surely it can be said that Messi was the focal point of 

his team Argentina and played a massive role in Argentina’s World Cup 
victory. 

 

❖ Conclusion: 

From the above 4 graphs, we can see that one name is always present in all 

the discussions of attacking output. He is the Argentine maestro, Lionel Messi. 
This demonstrates how a 35-year-old man leads his team Argentina to World 
Cup victory after 36 years of bringing out the best version of himself. This 

also shows that the FIFA authority did not make any wrong decisions by 
naming him the best player of the tournament, as the stats of Messi speak for 
themselves (he is the only player to win the World Cup Golden Ball twice). 



 

 

Also, he managed to win the Silver Boot and 5 Man of the Match awards in 
a single edition of the World Cup, which is a record in the history of the FIFA 
World Cup. Also, this is the first time any player has contributed goals in all 

knockout games. On the other hand, the French youngsters Mbappe and 
Griezmann won the Golden Boot (for scoring the highest number of goals) 
and Silver Ball (for their massive performances in the attacking and defensive 

transition) respectively. In this World Cup, many superstars like De Bruyne 
and Cristiano Ronaldo did not fulfil the expectations, whereas players like 
Perisic, Ounahi, and Mac Allister had an impressive tournament. 
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JAMES-STEIN ESTIMATOR: A BREAKTHROUGH 
IN STATISTICAL INFERENCE 

Yenisi Das, 3rd Year 

 

The James-Stein estimator, also known through Stein's paradox, is a widely 
recognised concept in statistics that illustrates the benefits of shrinkage in 

reducing the mean squared error of a multivariate estimator. The estimator, 
named after Charles Stein, who first introduced it, is considered a significant 
contribution to the field of statistics. In 1961, when James and Stein first 

published it, it came as a huge surprise to the statistics community, which 
was firmly rooted in the principle of maximum likelihood estimation laid out 
by R.A. Fisher in 1922, which states that given some data, one should 

choose the parameters that maximise the probability of observing the data 
that you actually observed. The James-Stein estimator also performs better 
than the least-squares estimator. It can be formulated as follows: 

Let 𝑋1, 𝑋2, … , 𝑋𝑝 be independent random variables, such that 𝑋𝑖~𝑁(𝜃𝑖, 1) 

for each 𝑖 = 1(1)𝑝.  

Now, we want to estimate the unknown parameters 𝜃𝑖, 𝑖 = 1(1)𝑝. Since we 

have only one sample for each 𝜃𝑖, an obvious choice of estimator is 𝜃𝑖 =
𝑋𝑖 for each 𝑖 = 1(1)𝑝. 

When we calculate the mean squared error (risk function) of this estimator, 

we get: 

𝐸[‖𝜃 − 𝜃‖2] = ∑

𝑝

𝑖=1

𝐸 [(𝜃𝑖 − 𝜃)
2
]. 

A risk function is used to quantify the average error of an estimator, 
whereas admissibility can be used to compare different estimators when 

they are used to estimate the same quantity. If 𝛩 is the parameter space, 

we say that the estimator 𝜃 dominates the estimator 𝜂̂ if, 

𝑀𝑆𝐸(𝜃, 𝜃) ≤ 𝑀𝑆𝐸(𝜃, 𝜂̂) 

for all 𝜃 ∈ 𝛩,  

𝑀𝑆𝐸(𝜃0, 𝜃) ≤ 𝑀𝑆𝐸(𝜃0, 𝜂̂) 



 

 

for some 𝜃0 ∈ Θ. An estimator is admissible if it is not dominated by any 

other estimator. 

It turns out that this estimator is inadmissible when 𝑝 ≥ 3. This means that we 
can find an estimator that always achieves a lower mean squared error 

irrespective of the value of 𝜃.  

In 1961, Stein derived the following explicit form of an estimator that 

strictly dominates 𝜃 in terms of the mean squared error:  

𝜃𝐽𝑠 = (1 −
𝑝 − 2

‖𝑋‖2
) 

Investigating the James-Stein estimator further, we see that it shrinks the 
initial estimate (X) towards the origin by multiplying it by a shrinkage factor 

proportional to the norm of X and the dimension p. It may seem surprising 
and perhaps paradoxical: given a set of noisy observations with means 

𝜃1, 𝜃2, … , 𝜃𝑃, we can apparently obtain a better estimate by relocating the 
observations toward some arbitrary point in the space, in this case the 

origin, rather than taking the individual observations as estimators of 

𝜃1, 𝜃2, … , 𝜃𝑃. 

❖ Bias-Variance Trade-off 

To make this estimator intuitive to understand, it is important to factor in the 

combined mean squared errors of all 𝜃𝑖
′𝑠 i.e., ∑𝑝

𝑖=1 𝐸 [(𝜃𝑖 − 𝜃𝑖)
2
] when 

judging the quality of the estimator. No shrinkage estimator would be able 

to uniformly dominate 𝜃𝑖 = 𝑋𝑖 if we judged the quality of the estimator 

using the mean squared errors of each 𝜃𝑖
′𝑠. However, since we focus on the 

mean squared error across all 𝜃𝑖
′s, it turns out we can do slightly better by 

reducing the variance of the estimator at the added cost of some bias. 
Stein’s paradox is a great demonstration of how removing the “unbiased” 

condition allows one to achieve better estimators in terms of mean squared 
error. The mean squared error can be decomposed into, one,  a squared 

bias term and, two,  a variance term which can be shown using the linearity 

of the expectation: 

∑

𝑝

𝑖=1

𝐸 [(𝜃𝑖 − 𝜃)
2

] = ∑

𝑝

𝑖=1

(𝐸(𝜃𝑖) − 𝜃)
2

+ ∑

𝑝

𝑖=1

𝐸 [(𝜃𝑖 − 𝐸(𝜃𝑖))
2

]

= 𝑝 



 

 

 The estimator  𝜃𝑖 = 𝑋𝑖 is unbiased so the first term is 0, and the second 

term is equal to p due to our assumption that  𝑉𝑎𝑟(𝑋𝑖) = 1 for each i. Now, 

we define a general shrinkage estimator of the form 𝜃𝛽 = 𝛽𝑋, 𝛽 ∈ 𝑅. We 

can find the MSE of this estimator as follows: 

∑

𝑝

𝑖=1

𝐸 [(𝜃𝛽,𝑖 − 𝜃𝑖)
2

] = (𝛽 − 1)2‖𝑥‖2 + 𝛽2𝑝 

The first term is the square of the bias, and the next term is the variance. 

We see that for any given 𝛽, the variance term only depends on the 

dimension p, and the bias term only depends on the norm (i.e., size) of 𝜃. 

Note that on one end, if 𝛽 = 1, we get back our original estimator 𝜃1 = 𝑋 

which has 0 bias but maximum variance. On the other end 𝜃0 = 0 has 0 
variance but arbitrarily large bias. 
 

For 𝛽 = 1 −
𝑝−2

‖𝑥‖2 i.e., the shrinkage factor of the James-Stein estimator, 

𝑀𝑆𝐸 = 𝐸 {‖𝑋 − 𝜃 −
(𝑝 − 2) ⋅ 𝑋

‖𝑋‖2
‖2}

= 𝐸||𝑋 − 𝜃||
2

+ 𝐸‖
(𝑝 − 2) ⋅ 𝑋

‖𝑋‖2
‖2

− 𝐸‖2(𝑝 − 2)∑
(𝑋𝑖 − 𝜃𝑖) 𝑋𝑖

‖𝑋‖2
‖2 

= 𝑝 − (𝑝 − 2)2𝐸 [
1

‖𝑥‖2
] + 2(𝑝 − 2) ∑

𝑝

𝑖=1

𝐸 [
(𝑋𝑖 − 𝜃𝑖)𝑋𝑖

‖𝑋‖2
] 

Now the last term for i=1 can be calculated as: 

𝐸 [
(𝑥1 − 𝜃1)𝑥1

‖𝑥‖2
] = ∫

∞

−∞

⋯ ∫
∞

−∞

(𝑥1 − 𝜃1)𝑥1

‖𝑥‖2
⋅

𝑒−
‖𝑥−𝜃‖2

2

(2𝜋)
𝑝
2

ⅆ𝑥1 … ⅆ𝑥𝑝 



 

 

Using integration by parts, we get∫
∞

−∞
⋯ ([−

𝑥1

‖𝑥‖2 𝑒−
‖𝑥−𝜃‖2

2 ]
∞

−∞

+

∫
∞

−∞
𝑒−

‖𝑥−𝜃‖2

2 ⅆ (
𝑥1

‖𝑥‖2)) … ⅆ𝑥𝑝 = ∫
∞

−∞
⋯ ∫

∞

−∞

‖𝑥‖2−2𝑥1
2

‖𝑥‖4 ⋅

𝑒
−

‖𝑥−𝜃‖2

2

(2𝜋)
𝑝
2

ⅆ𝑥1 … ⅆ𝑥𝑝 = 𝐸 [
‖𝑥‖2−2𝑥1

2

‖𝑥‖4 ] 

Therefore 𝑀𝑆𝐸 = 𝑝 − (𝑝 − 2)2𝐸 (
1

‖𝑥‖2) − 2(𝑝 − 2)𝐸 [∑𝑝
𝑖=1

‖𝑥‖2−2𝑥𝑖
2

‖𝑥‖4 ] 

= 𝑝 + (𝑝 − 2)2𝐸 (
1

‖𝑥‖2
) − 2(𝑝 − 2) ⋅ (𝑝 − 2)𝐸 (

1

‖𝑥‖2
)

= 𝑝 − (𝑝 − 2)2𝐸 (
1

‖𝑥‖2
) 

Observe that 𝐸 (
1

‖𝑥‖2) does not converge for 1 or 2 dimensions. However, 

in 3 or higher dimensions after transforming the integral into polar 

coordinates we get the following integral which converges since the 𝑟2 term 
in the denominator cancels out. Here f denotes the pdf of the multivariate 

Normal distribution. 

 

𝐸 [
1

‖𝑥‖2] = ∫
2𝜋

0
∫

𝜋

0
∫

∞

0

1

𝑟2 𝑓(𝑟, 𝜃, 𝜑)𝑟2

𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃 ⅆ𝑟 ⅆ𝜃 ⅆ𝜑=∫
2𝜋

0 ∫
𝜋

0 ∫
∞

0
𝑓(𝑟, 𝜃, 𝜑) 𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃 ⅆ𝑟 ⅆ𝜃 ⅆ𝜑 

 

In general, the Jacobian for p dimensions is given by |𝐽| = 𝑟𝑝−1𝜃1  …
𝑠𝑖𝑛 𝑠𝑖𝑛 𝜃𝑃−2  and hence for p greater than or equal to 3 the 𝑟2 the term in 
the denominator cancels out which makes the integral converge. Since p > 

𝑝 − (𝑝 − 2)2𝐸 (
1

‖𝑥‖2),  𝜃𝐽𝑠 𝑖𝑠 𝑎 𝑏𝑒𝑡𝑡𝑒𝑟 𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑜𝑟 𝑡ℎ𝑎𝑛 𝜃. 

 

❖ Visually intuitive explanation: 
 
Assume there is a circle on the XY plane, and we must guess the location of 
the circle's centre based on the location of a randomly selected point within 

the circle. Let’s call this position P, and we’ll call the true, unknown centre of 
the circle A. 



 

 

 

Let’s suppose the circle has radius 1 and its true centre is at (3,0). For 
simplicity, let the point we shrink towards be the origin (C). Now, if I 
randomly draw a point from this circle, we want to find what proportion of 

the time my guess will actually be better if I shrink it slightly towards the 
point C, i.e., what proportion of the circle could get closer to the centre if it 
were shrunk towards C a little. 

 
The answer to that question is region X on the figure. Using geometry, we 
can say it’s about 61% of the circle. In the actual scenario, i.e., in the case 

of a bivariate normal distribution, 39% of the circle that moves farther from 
the mean collectively moves more far away than that distance moved closer 
by the other 61%, and that is why the James-Stein estimator works only in 

dimension 3 or higher. 

 

Considering the problem in three dimensions, we now have a sphere rather 
than a circle, but everything else remains the same. In three dimensions, the 

region X covers just over 79% of the sphere, so about four times out of five, 
our shrinkage estimator does better than estimating the point A. Region X 
covers 87% of the sphere in four dimensions, about 98% of the sphere in 

ten dimensions, and 99.99999% in one hundred dimensions.  
 
There is a strong connection between random walks and the admissibility of 

the naive estimator 𝜃𝑖 = 𝑋𝑖 , discovered by Lawrence Brown. Brown found 
that the naive estimator is considered admissible only if a random walk 



 

 

returns to the origin an infinite number of times. In one or two dimensions, 
random walks do return to the origin, but in three or more dimensions, they 
do not. This is because as the dimensionality of the space increases, the 

random walk drifts away from the origin at a linear rate, while the volume 
subtended by the origin at a fixed distance decreases exponentially. In one 
or two dimensions, the volume subtended by the origin is large enough that 

it is likely to eventually return to it, but in higher dimensions, the volume is so 
small that the probability of returning to the origin approaches zero. It is 
difficult to demonstrate this correspondence, but an intuitive method for 

solving both problems involves comparing the distance between a point and 
the origin and the volume of the unit sphere in space. 

❖ Some applications 

The best thing about being a statistician is that you get to play in everyone's 
backyard. 

                                                        -- John Tukey 

● Modern machine learning algorithms, such as ridge and Lasso regression, 
are underpinned by these ideas of shrinkage. The idea of shrinkage 

(sometimes to even zero) is known as regularization. James Stein estimator 
is not admissible either, there are some estimators that dominate it, like the 
positive part James-Stein estimator. 

● Many modern statistical models may involve thousands or even millions of 
parameters (e.g., in microarray experiments in genetics, or fMRI studies in 
neuroimaging); in such circumstances, we would almost certainly want 
estimators to set some of the parameters to zero, not only to improve 

performance but also to ensure the interpretability of the fitted model which 
is the main idea behind the estimator to shrink. 

● The extensions of the James-Stein estimator have been applied to adaptive 

statistical signal processing problems. The James–Stein state filter (JSSF), 
which is a robust version of the Kalman filter, has been derived. 

● Using the James-Stein estimators and Pinsker’s theorem, a novel deep 
learning architecture that combines nonparametric regression for feature 

extraction with a deep neural network has been used for classification in 
the problem of decoding eye movement intentions from Local Field 
Potentials collected in macaque cortex at various cortical depths. 
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BAYES’ THEOREM: THE TOOL FOR PREDICTING 
THE FUTURE 

                  Swagata Kar, 2nd Year 

❖ Introduction: 

Suppose you are not feeling well for a few days but don’t have any 

particular symptoms. The next day you decide to visit the doctor, and they 
suggest a series of tests. After some days when you get all the reports, it 
turns out that you have tested positive for a rare disease. To learn more 

about it, you go through Google and find that it is a serious one that affects 
only about 2% of the population and has negative consequences. When you 
ask your doctor – “how certain is it that I have this disease?”, they say – “the 

test is 90% sensitive (true positive rate of the test) and also correctly identifies 
85% of people who are not affected by the disease (true negative rate)”. 
This means the chance that you have the disease is 90%. This sounds pretty 

bad, right? However, that is not correct! You need Bayes’ Theorem to get 
some mathematical perspective. 

 

❖ Overview: 
 

❑ Changing beliefs on Bayes’ Theorem: 

At the core of Bayes’ rule is the idea that we update our beliefs every time 

we get new evidence. The Bayesian school of thought allows us to adapt our 
thinking reactively to new evidence as it arises and adjust our action to 
optimize the odds of success as the probabilities evolve in real-time. 

The probabilities involved in the theorem may have different probability 
interpretations. With Bayesian probability interpretation, the theorem 
expresses how a degree of belief, expressed as a probability, should 

rationally change to account for the availability of related evidence.  

❖ Bayes’ Theorem: 

Bayes’ theorem (alternatively known as Bayes’ Law), named after Thomas 
Bayes, describes the probability of an event based on prior knowledge of 
conditions that might be related to the event. Expressed below is the 

mathematical equation that illustrates Bayes’ theorem: 



 

 

 

For any two events A and B, 

𝑃 (𝐵) =
𝑃(𝐴) ∗  𝑃(𝐴)

𝑃(𝐵)
 

where P(B) ≠ 0. 

 

❑ P (A | B) is the conditional probability of occurrence of event A given that B is 
true. It is also called the posterior probability of A given B. 

❑ P (B | A) is the conditional probability of occurrence of event B given that A is 
true. It can also be interpreted as the likelihood of A given a fixed B. 

❑ P(A) and P(B) are the marginal probabilities of observing events A and B 
respectively. 

 We can write, 

𝑃(𝐵) = 𝑃(𝐴) ∗ 𝑃(𝐴) + 𝑃(𝐴𝐶) ∗ 𝑃(𝐴𝐶), where AC is the complement of the 
event A. 

Thus, using this equation, Bayes’ theorem can be derived as: 

𝑃(𝐵) =
𝑃(𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
=

𝑃(𝐴) ∗ 𝑃(𝐴)

𝑃(𝐴) ∗ 𝑃(𝐴) + 𝑃(𝐴𝐶) ∗ 𝑃(𝐴𝐶)
 

 

❖ Diagnostic Test Scenario: 
 

Let A be the event that a person is affected by a disease and B be the event 
that the result of the test of that particular person is positive. Let, 

❑ P (A): Probability that the person is affected by the disease. 

❑ P (B): Probability that the test result is positive.  

❑ P (A | B): Probability that the person is affected when the test result is 
positive. 

❑ P (B | A): Probability that the test result is positive when the person is 
affected. 



 

 

By Bayes’ Theorem we can write,  

𝑃 (𝐵) =
𝑃(𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
 

 

P (Disease=True | Test=Positive) 

= 
𝑃(𝑇𝑒𝑠𝑡=𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 | 𝐷𝑖𝑠𝑒𝑎𝑠𝑒=𝑇𝑟𝑢𝑒) ∗ 𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒=𝑇𝑟𝑢𝑒)

𝑃(𝑇𝑒𝑠𝑡=𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 

As discussed earlier, the accuracy of the medical diagnostic test is not perfect; 
they have errors. 

Sometimes a patient will have the disease, but the test will not detect it. This 
capability of the test to detect the disease is referred to as the sensitivity or 
the true positive rate. 

In this case, the test is good, but not great, with a true positive rate or 
sensitivity of 90% i.e., of all the people who have the disease and are tested, 
90% of them will get a positive result from the test. 

P (Test = Positive | Disease = True) = 0.90 

Given this information, our intuition would suggest that there is a 90% 
probability that the patient has the disease.  

But our intuitions of probability are wrong! 
This type of error in interpreting the probabilities is called the Base Rate 
Fallacy. 

We have already assumed that the probability of having this disease is very 
low and the base value is 2%. 
P (Disease = True) = 0.02 

Thus, we can correctly calculate the probability of a patient having the 
disease given a positive test result using Bayes’ Theorem. 

P (Disease=True | Test=Positive) = 
0.90 ∗ 0.02

𝑃(𝑇𝑒𝑠𝑡=𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 

To find the value of P(B) i.e., P (Test=Positive), we know that, 

𝑃(𝐵) = 𝑃(𝐴) ∗ 𝑃(𝐴) + 𝑃(𝐴𝐶) ∗ 𝑃(𝐴𝐶) 

i.e., 

P (Test = Positive) = P (Test = Positive | Disease = True) * P (Disease = True) 

+  



 

 

                                  P (Test = Positive | Disease = False) * P (Disease = 
False) 

First, we will calculate P (Disease = False) as the complement of P (Disease 

= True), which we already know. 

P (Disease =False) = 1 – P(Disease=True) = 1 – 0.02= 0.98 
 

We still do not know the probability of a positive test result given no disease. 
To calculate this, we should know the probability of getting a negative result 
(Test=Negative) when the patient does not have the disease (Disease = 

False). It is called the true negative rate or the specificity. 

P (Test = Negative | Disease = False) = 0.85 

P (Test = Positive | Disease = False) = 1 – P (Test = Negative | Disease = 

False)  
                                                          = 1 – 0.85 
                                                          = 0.15 

 
We can plug this false positive value into our calculation of P(Test=Positive) 
as follows: 

P(Test=Positive) = 0.90 * 0.02 + 0.15 * 0.98 
                      = 0.018 + 0.147 
                      = 0.165 

 
Here is the table of data:  
 

                              Test 

      Disease 

Negative Positive 

True 0.10 0.90 

False 0.85 0.15 

 
 
Now we will estimate the probability of a randomly selected person having 

the disease if they get a positive test result.  
 
P (Disease=True | Test=Positive) 

= 
𝑃(𝑇𝑒𝑠𝑡=𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 | 𝐷𝑖𝑠𝑒𝑎𝑠𝑒=𝑇𝑟𝑢𝑒) ∗ 𝑃(𝐷𝑖𝑠𝑒𝑎𝑠𝑒=𝑇𝑟𝑢𝑒)

𝑃(𝑇𝑒𝑠𝑡=𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒)
 



 

 

 

                                                      = 
0.90 ∗ 0.02

0.165
 

 
                                                      = 0.109090909 

 
                                                      = 0.11 (approximately) 
 

Thus, the above calculation suggests that if the patient is tested and the result 
is positive, there is only an 11% chance that they have the disease. 
 

It is a terrible diagnostic test! 

Thus, using Bayes’ Theorem we get a real-life perspective of the chances of 
having the disease. 

Let us discuss practical implementation and some real-life examples. 

 

❖ Medical Test Results and Bayes’ Theorem: 
 
Nowadays, it is becoming a trend that doctors are prescribing various types 

of tests, especially Full Body Checkup(s) which include 30 – 40 different kinds 
of tests altogether. 

To get the test report, we need to count and calculate the number of blood 

cells and compounds in the sample taken from the user. We can use this data 
to predict the possibilities of upcoming problems (due to deficiency or surplus 
of elements) using Bayes’ Theorem. 

Here is an example:  
 
 

 
      Vitamin B-12                         156.47                        pg / mL                          
120 - 914             

 
Comments: 

Increased Levels:  

 

⮚ Renal Failure  

⮚ Liver Disease 

Test Name                            Value                          Unit                        Bio Ref. Interval 



 

 

⮚ Myeloproliferative Disorder. 

 

Decreased Levels: 

 

⮚ Pernicious Anemia 

⮚ Megaloblastic Anemia 

⮚ Iron Deficiency  

⮚ Dizziness 
 

 
After getting the count of the components from the sample, we need to 
consider the count in relation to the standard bio-reference interval. There 

can be two cases –  
1) The count doesn’t lie within the standard interval.  

I. The count lies below the lower limit of the interval. 

II. The count lies above the upper limit of the interval. 
 
Here I. causes the diseases mentioned as “decreased levels” and II. causes 

the diseases mentioned as “increased levels” in the above table respectively. 
 

2) The count lies within the standard interval.  

I. The count lies more or less in the middle of the interval. 
II. The count lies near the lower limit of the interval. 
III. The count lies near the upper limit of the interval. 

 
Here I. denotes that the test result is good, and the person need not to worry 
about that particular element. II. and III. denote the possibilities that the 

person can be affected by the “decreased level” diseases and “increased 
level” diseases respectively in near future. This should be taken care of.  

❖ Use of Bayes’ Theorem:  

Suppose someone’s Vitamin B12 level is 156.47 pg/mL (as mentioned in the 
above table) which is near the lower limit of the given interval. This means 

that the person has a high possibility of having “decreased levels” of diseases 
in the near future. To know the chances of being affected by one of the 
diseases (e.g., Anaemia), we use Bayes’ Theorem. 

We can write, 



 

 

 

𝑃 (𝐵) =
𝑃(𝐴) ∗ 𝑃(𝐴)

𝑃(𝐵)
 

 
where A is the event that the person can be affected by the disease and B 

denotes the amount of Vitamin B12 in that person’s body.  
P (A | B) is the probability that the person can be affected by the disease 
when the amount of Vitamin B12 in their body is at 156.47 pg/mL. 

P (B | A) is the probability that the amount of Vitamin B12 in the person’s 
body is 156.47 pg/mL when they have the chance of being affected by the 
disease in the future.  

 
From the previous dataset, we can get the above-required values for 155-
160 pg/mL level of Vitamin B12 in patients’ bodies who got affected and 
also who didn’t get affected by the disease in the future.  

Putting these values in Bayes’ Theorem, we calculate the chances of having 
the disease in the future which gives the patient more reliable information.  
 

❖ Conclusion: 

Bayes’ theorem is a framework for decision-making based not on predictions 
or opinions but on evolving statistical analysis of incoming data filtered 
through an existing model. Applying Bayes’ Theorem on prior knowledge of 

conditions or previously stored data sets, which is related to the event, can 
give us desired results to make proper decisions. 
We cannot deny the uncertainty of the upcoming future, but using Bayes’ 

Theorem along with other statistical tools we can surely have a brief idea of 
future predictions which will help mankind to lower the risk factors while 
making decisions and taking precautionary measures. 

 

❖ Future Scope: 

In intricate situations, the utilization of Artificial Intelligence in decision-making 
will reduce the chances of human error while making strategic planning more 
effective with higher efficiency. 
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Water is all around us, isn't it? Rivers, Lakes, the Sea you swim in on holidays 
or live nearby. There seems to be an endless supply. So, why do people keep 
telling us we need to save water as much as possible? 

According to SES Water, 1 in 4 people admit to taking water availability for 
granted, with no idea how much water they use daily. 67% feel they can't 
use less water than they already do. An average household uses 350 litres 

of water a day, yet people estimate they use only 157 litres a day.   

The problem is, we take things for granted. To be completely honest, I did 
not realize the exact extent of this issue until I started my research on what is 

mentioned below and it certainly opened my eyes. The information has led 
me to look at my own habits when using water.  

We all know water is an essential part of our lives. We need it daily to live 

and perform vital functions of life. Plants need water to grow and in turn, we 
get to eat the plant or the organisms which eat the plants. It is an extremely 
important substance.  

•  The average family can waste 180 gallons per week or, 9,400 gallons of 
water annually, from household leaks.  

•  Household leaks can waste approximately nearly 900 billion gallons of 

water annually nationwide.  That's equal to the annual household water use 
of nearly 11 million homes.  

  

•  Running the dishwasher only when it's full can eliminate one load of dishes 
per creek and can save the average family use to nearly 320 gallons of 
water annually.  

•  Turning off the tap while brushing your teeth can save 8 gallons of water, 
while shaving can save 10 gallons of water per shave. Assuming you brush 
your teeth twice daily and shave five times per week, you could save 5,700 

gallons per year.  



 

 

  

•  Letting your faucet run for five minutes while washing dishes can waste 10 
gallons of water that can produce enough energy to power a 60-watt light 

bulb for 18 hours.   

•  On average, outdoor water use accounts for more than 30 percent of total 
household water use but can go up to 60 percent of total household water 

use in arid regions.  

•  As much as 50 percent of the water we use outdoors, is lost due to wind, 
evaporation and runoff caused by inefficient irrigation methods and systems. 

A household with an automatic landscape irrigation system that isn’t properly 
maintained and operated, can waste up to 25000 gallons of water 
annually.   

   

 

      

 From the above pie chart, we can show that we use significantly more water 
in different working sectors than we need.  

So, here I am going to discuss how we can save water or use water in the 
right measurements so that we can waste water as little as possible.  

Now the question is how statistics can help in water conservation. Basically, in 

water conservation, everything is related to data, and data means statistics. 
Initially, through surveys, we can collect broad data and based on that we 
can adopt different ways and technologies to conserve water.  

 



 

 

● Surveys: 

Through organizing surveys, we can collect a broad amount of data. We take 
India as our area of study. So, firstly we can organize surveys locally, and 
many local surveys together result in a broad survey. Through these surveys, 

we can get a huge amount of data. Summarizing these data, we can get the 
amount of water needed per day. Now, the government should assign a 
certain limit to the amount of water a person could use daily. I know, in India 

it is not easy to implement, but to reserve fresh water for our future 
generations, it’s high time we should think about it. 

For example, let an average Indian need 100 Litres of water per day and 

in a house, there are 4 members. So, they get 400 litres of water per day. If 
they need more than that they can buy using money. And with that money the 
government can install necessary technologies. 

  

● Spread Awareness: 

There is a well-known method called the interview method in data collection, 

where our interviewers talk to the Indian households and try to know about 
their habits and how much water they waste. Using this data, we can make 
them aware of their bad habits and how they can save more water. 

  

● Some ways how we can spread awareness – 

  

• Check your toilet for leaks. (Leaking can waste more than one hundred 
gallons of water a day.) 

• Stop using your toilet as an astray or wastebasket. (Every cigarette butt or 

tissue you flush away also flushes away five to seven gallons of water.) 

• Take Shorter Showers - (A typical shower uses five to ten gallons of water 
a minute. Limit your showers to the time it takes to soap up, wash down and 

rinse off.) 

• Take a bath in tubs. (A partially filled tub uses less water than all but the 
shortest showers.) 



 

 

• Turn off the water faucet while brushing your teeth. (Before brushing wet 
your brush and fill a glass for rinsing your mouth.) 

• Turn off the water faucet while shaving. (Fill the bottom of the sink with a 

few inches of warm water to rinse your razor.) 

• Check faucets and pipes for leaks. (Even a small drop can waste 50 or more 
gallons of water a day.) 

• Use your automatic dishwasher and washing machine only for full loads. 

• Tell your children not to play with the hose and sprinklers. (Children love to 
play under a hose or sprinkler on a hot day. Unfortunately, this practice leads 

to the wastage of precious water and should be discouraged.) 

• Don't run the hose while washing your car. (Soap down your car using a pail 
of soapy water. Use a hose only to rinse it off.) 

And many more. 

 

● Water Saving Technologies – 

 In the USA, many water-saving technologies are developed. But in India, we 

are still following those typical old techniques. Some water-saving 
technologies need to be developed in India as soon as possible. 

• WaterSense Labelled Irrigation controllers. (WaterSense labels weather-

based irrigation controllers, a type of "smart" irrigation control technology 
that uses local weather data to determine when and how much to water. 
WaterSense Labelled irrigation controllers can save you water, time, and 

money when compared to standard models.) 

•  Soil Moisture Sensors. (Soil moisture-based control technologies water 
plants based on their needs by measuring the amount of moisture in the soil 

and tailoring the irrigation schedule accordingly.) 

• Rain Sensors. (Rain Sensors can help decrease water wasted in the 
landscape by turning off the irrigation system when it is raining.) 

• Rainfall Shut off devices. (Rainfall shut-off devices turn off your system in 
rainy weather and help compensate for the same. This inexpensive device 
can be retrofitted to almost any system.) 



 

 

• Sprinkler Heads. (Certain types of sprinkler heads apply water more 
efficiently than others. Rotary spray heads deliver water in a thicker stream 
than mist spray heads.) 

  

● What issues are there with water availability? 

• When rain falls, 50% goes back to the atmosphere through evaporation or 
gets used by plants, a process known as evapotranspiration. The rest 

(effective rainfall) is available as surface water or groundwater. 

• Climate change. (Climate change is at critical levels. We've noticed the 
changes in weather ourselves over the years. We are getting dryer summers 

which can lead to droughts. There are also wetter monsoons that bring about 
the potential for flooding.) 

• Population growth. (The population is growing and with a growing 

population comes more demand for resources. The rate of abstraction of 
water is already at levels which are not sustainable. A growing population 
demanding more water in an instant, will only worsen this.) 

• Energy generation. (Generating energy is a major use of water. Not only 
this, if we use more water than needed (i.e., we waste water) there is a need 
for heating water that isn't required. This not only increases the bills but 

creates more carbon to produce the energy required to heat the water. The 
increasing population means an increase in energy demands. This can be 
offset by using more eco-friendly methods of energy production, but again 

is not a quick-fix option.) 

  

• Changes in lands, rivers and wetlands use. (The new generation will need 

to live and work somewhere. Therefore, ground that was available to 
abstract water from is being covered with bricks, mortar and tarmac.) 

• Water in our lakes, wetlands and watercourses protects the environment. 

This means that increasing the abstraction of water would have a negative 
effect.) 

  



 

 

Nowadays water conservation is an important issue. Proper Water 
Management is important for several reasons. Some of those reasons include: 

• Water is a resource. The current water supply on earth comes from surface 

water, groundwater, and snow. This supply comes from the same sources that 
have been used for thousands of years, which are now being threatened by 
overuse, pollution, and global warming. Only three percent of the earth's 

water supply is made up of fresh water, with only half a percent of that 
available for human consumption.   

• Conservation alleviates droughts. Dry areas like deserts experience drought 

regularly, in which the rainfall and snowfall aren't adequate and might cause 
water shortages. Conserving water can help alleviate the effects of water 
shortage in any given community. 

• Using water drains other resources. Using in-house water resources requires 
energy to deliver the water to your home. This energy use increases when 
you use hot water since a lot of energy goes into heating. Reducing the use 

of hot and cold water can help conserve both water and energy, cutting down 
on energy pollution which harms the environment. 
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