Semester	III		
Course ^{*1}	SEC-1		
Paper Code	S2BT230311T		
Paper Title	Biophysical Methods and Bioinorganic Chemistry		
No. of Credits * ²	3		
Theory / Practical /	Theory		
Composite			
Minimum No. of	3		
preparatory hours per week			
a student has to devote			
Number of Modules	1		
Syllabus			
	UNIT I:		
	Buffer solution and its application: Ionic product of water, pH scale,		
	Calculation of pH for strong acid. strong base, weak acid and weak		
	base. Hydrolysis of salt - calculation of hydrolysis constant, degree of		
	hydrolysis and pH for different salts. Buffer solutions, pH of buffer		
	solutions. Henderson Hasselbalch equation. Buffer canacity. Buffer		
	solution in biological systems. Degulations of Diserbonate buffer, all		
	solution in biological systems, Regulations of Dicarbonate buller, pri-		
	Chromatography: Introduction to the principle of chromatography.		
	Paper chromatography, Thin layer chromatography, Column		
	chromatography: silica and gel filtration, affinity and ion exchange		
	chromatography, HPLC. Principles of Gel Electrophoresis. Overview		
	of sedimentation and density gradient techniques.		
	UNIT III:		
	Spectroscopy: Absorption and emission spectroscopy, Lambert-Beer		
	Law, Spectrophotometry (UV, visible, infrared), colorimetry,		
	fluorimetry.		
	Unit IV:		
	Bioinorganic Chemistry: A brief introduction to Bioinorganic		
	Chemistry, Elements of life, Classification of elements according to		
	their action in biological system Role of metal ions present in		
	biological systems (Na+ K+ Ca2+ Mg2+ Fe3+/Fe2+ Cu2+/Cu+		
	Zn2+ Oxygen corrying proteins structure and physiological role of		
	Lin2+). Oxygen can ying proteins - structure and physiological role of		
	maching rout and myoground. Electron transport proteins- from-sulfur		
	proteins and cytochromes. Redox enzymes- Fe, Cu, Zn-containing		
	redox enzymes. Hydrolytic enzymes- carboxypeptidase A, carbonic		
	annydrase. Phosphate transfer and metabolic energy.		
Learning Outcomes * ³			
Learning Outcomes **	1. introduce students to the application of buffer solution and its		
	importance in biological system.		
	2. enable students to understand the principles of		
	chromatography and its application.		

	3. provide an overview of various technical methods which have useful applications in Biotechnology.		
	4. introduce students to the principles of spectroscopy and its application.		
	5. provide a knowledge of Bioinorganic Chemistry and its application.		
Reading/Reference Lists *4	 P. S. Kalsi, Spectroscopy of Organic Compounds. C. N. Banwell & E. M. McCash, Fundamentals of Molecular Spectroscopy. Lehninger, Principles of Biochemistry. R. P. Sarkar, General and Inorganic Chemistry. Asim K. Das, Bioinorganic Chemistry. 		
Evaluation	Theory (50) CIA- 10 Seminar/Assignment/Any other form – 03 Attendance - 02 Semester Exam- 35		
Paper Structure for Theory Semester Exam	Compulsory objective questions: $1 \times 5=5$ marks Any three out of four questions: Each of 10 marks with subparts [No sub-part will be more than 5 marks]		