Semester	ONE			
Course	Major (Paper 2)			
Paper Code	C1DS250121T			
Paper Title	Real Analysis and Linear Algebra 1			
No. of Credits	4			
Theory/Composite	Theory			
/				
Practical				
Minimum No. of	Module 1: 2 periods			
preparatory hours	Module 2: 2 periods			
per week a student				
has to devote				
Number of	TWO			
Module				
Syllabus	Module-I			
	Unit 1: Sets, Logic, and Relations[10L]			
	Sets, operations on sets, Cartesian product, power set, Propositional logic, predicat			
	quantifiers, Equivalence relations, partial orders, injective, surjective, and bijective			
	functions, Cardinality & Infinite Sets-Cardinality of finite and infinite sets, Comparison			
of cardinalities, Cantor-Schroeder-Bernstein theorem (statement only).				
	Unit 2-Real Number System[4L]			
	Real number system: Basic ideas, Archimedean Property, completeness.			
	Unit 3- Sequences and Series of Real Numbers[12L]			
	Sequences: Definition, convergence, bounded and monotone sequences, Cauchy			
	sequences.			
	Series: Definition, absolute and conditional convergence.			
	Tests of convergence (statement and applications): Comparison, Limit Comparison Ratio, Root, Rabbe's, Cauchy Condensation, Logarithmic, Integral tests, Abel's an			
	Dirichlet's tests. Module-II			
	Unit 1: Algebra of Matrices and Determinants: Matrix representation of data tables and its relevance in data science. A review of matrix operations- addition, multiplication, transposition. Introduction to special classes of matrices- symmetric, skew-symmetric, orthogonal, and idempotent matrices. Concepts of trace, rank, and partitioning of matrices.			
	Determinants: Definition, interpretation, and key properties. Determinant of product of matrices, effect of elementary row transformations on the determinant. Singular and non-singular matrices and their properties.			
	Inverse of a matrix and related properties. Adjoint and cofactor. [6]			

	Unit 2: Ideas of Vectors-Definition of a vector. Vector addition and scalar multiplication. Scalar product. Linear combination of vectors and the geometric interpretation of vector operations. Linear independence and dependence of a set of vectors. Orthogonal and orthonormal vectors. Gram-Schmidt orthogonalization process. [6]			
	Unit 3: Vector Space- Vector spaces over the field of real numbers. Subspaces. Sum and intersection of subspaces. Span of a set of vectors. Basis and dimension.			
	Projection. Orthogonal subspaces. Ortho-complement of a subspace. Row space and column space of a matrix. Null space and nullity of a matrix; connections with solvability of linear systems. [10]			
	Unit 4: Matrix Rank and Its Applications: Definition of rank of a matrix, row ra and column rank; equivalence of row rank and column rank. Standard theorems involv rank, including the Rank-Nullity Theorem. Rank of the sum and product of matric [4]			
Learning Outcomes	 Applying fundamental concepts of real analysis to analyze the behavior of numerical methods and optimization techniques used in data science. Evaluating the convergence of sequences and series using standard mathematical tests. 			
	• Utilizing set theory, logic, and relations to model data structures, relational databases and logical reasoning in artificial intelligence.			
	 Recalling the fundamental concepts of combinatorics and Venn diagrams. 			
	• Understanding matrix operations, special matrix types, and determinants to interpret and manipulate structured data in tabular (matrix) form.			
	• Applying vector operations and vector space concepts to analyze			
	 Analyzing matrix rank and subspace relationships to assess the solvability of 			
Reading/Reference	linear systems and to identify dimensionality and dependencies in datasets.			
List	Wiley & Sons Inc.			
	 Goldberg R. R. (2020): Methods of Real Analysis, Oxford & IBH Publishing Co Pyt I td 			
	3. Khuri A. (2003): Advanced Calculus with Applications in Statistics, 2nd Edition,			
	Wiley Interscience.			
	4. Rudin W. (2017): Principles of Mathematical Analysis, 3rd Edition, McGraw Hill Publication.			
	5. Rosen, K. H. (2019): Discrete Mathematics and Its Applications, 8th Edition, McGraw-Hill.			
	 Kolman, B., Busby, R., Ross, S. C. (2013): Discrete Mathematical Structures, 6th 			
	Edition, Pearson.			
	7. Hadley, G. (2002): Linear Algebra. Narosa Publishing House (Reprint).			
	9. Narayan, S. (2004): A Textbook of Matrices, S. Chand & Co. Ltd.			
	10. Searle, S. R. (1982): Matrix Algebra Useful for Statistics. John Wiley & Sons.			
	11. Lay, D. C., Lay, S. R., & McDonald, J. J. (2015): Linear Algebra and Its			
Evoluction	Applications (5th Edition). Pearson.			
Evaluation	Semester exam: 70			

	Total: 100	
Paper Structure for	Module-I (35 marks)	Module-II (35 marks)
Theory Semester	To answer Short: 4 out of 6 (5 marks)	To answer Short: 4 out of 6 (5 marks)
Exam	Long: 1 out of 2 (15 marks)	Long: 1 out of 2 (15 marks)