Semester	ONE		
Course	Major		
Paper Code	C1DS250221T		
Paper Title	Calculus and Linear Algebra 2		
No. of Credits	4		
Theory/Composite/	Theory		
Practical	·		
Minimum No. of	Module 1: 2		
preparatory hours	Module 2: 2		
per week a student			
has to devote			
Number of Module	TWO		
Syllabus	Module-I		
J	Unit 1: Limits, Continuity, Differentiability and Applications [10L]		
	Limits of real-valued functions: Definition, sequential limits, properties.		
	Continuity: Definition, intermediate value property, discontinuous functions.		
	Differentiability: Definition, chain rule, Rolle's Theorem.		
	Taylor's theorem, remainder terms. Maxima and minima of functions. L'Hospital's rule of limits.		
	Statements of results and applications.		
	Unit 2: Integration [6L]		
	Introduction to Riemann Integration – Definition, Basic Concepts and Properties. Improper		
	Integrals – Definition & Examples, Simple Tests for Convergence of Improper Integrals. Beta and		
	Gamma Integrals – Definitions, Evaluations and Properties.		
	Unit 3: Sequences and Series of Functions [5L]		
	Pointwise and Uniform Convergence, Properties of Uniformly Convergent Functions, Weierstrass'		
	M-Test for Series Convergence. Power Series – Radius of Convergence, Tests and Properties.		
	Unit 4: Analysis of Functions in Two Variables [5L]		
	Introduction to Functions of Two Variables – Partial Differentiation and Total Differentiation.		
	Vector Differentiation – Gradient, Divergence & Curl. Double Integrals.		
	Module-II		
	Unit 1: Solution of a System of Linear Equations: Elementary matrices and row operations. Row		
	reduction techniques and echelon forms. Solution of System of linear equations. [5]		
	Unit 2: Eigenvalues and Eigenvectors: Definition and computation of eigenvalues and		
	eigenvectors. Properties of eigenvalues and eigenvectors. Statement and applications of the Cayley-		
	Hamilton Theorem. Diagonalization of matrices. [6]		
	Unit 3: Linear Transformations: Definition. Matrix representation of a linear transformation.		
	Kernel and image, rank and nullity in the transformation context. Applications in projections and		
	dimensionality reduction. [5] Unit 4: Quadratic Forms: Definition. Classification. Canonical reduction of quadratic forms. Rank and signature. [6] Unit 5: Singular Value Decomposition (SVD): Definition and interpretation. Decomposition of any		
	real matrix into orthogonal and diagonal components. Use of SVD in computing pseudoinve		
	low-rank approximations, and matrix compression. [4]		
	10w-rank approximations, and matrix compression.		
Learning Outcomes	Applying fundamental concepts of real analysis to analyze the behavior of numerical		
	methods and optimization techniques used in data science.		
 Evaluating the convergence of sequences and series using mathematical to 			
	Utilizing set theory, logic, and relations to model data structures, relational databases, and		
	logical reasoning in artificial intelligence.		
	 Applying row operations and echelon forms to solve systems of linear equations. 		
	 Applying fow operations and centron forms to solve systems of initial equations. Analyzing eigenvalues, eigenvectors, and linear transformations to assess matrix 		
	diagonalizability and applications in dimensionality reduction.		
	 Evaluating matrices using quadratic forms and singular value decomposition (SVD). 		
	2 Draidating matrices using quadratic forms and singular value decomposition (SVD).		

Reading/Reference	1. Bertle R. G., Sherbert D. R. (2011): In	Bertle R. G., Sherbert D. R. (2011): Introduction to Real Analysis, 4th Edition, Wiley		
List	& Sons Inc.	& Sons Inc.		
	2. Goldberg R. R. (2020): Methods of R)): Methods of Real Analysis, Oxford & IBH Publishing Co Pvt		
	Ltd.			
	3. Khuri A. (2003): Advanced Calculus w	3. Khuri A. (2003): Advanced Calculus with Applications in Statistics, 2nd Edition, Wiley		
	Interscience.			
	4. Rudin W. (2017): Principles of Mathematical Analysis, 3			
	Publication.			
	5. Marsden, J. E., & Tromba, A. J. (2003)	 Marsden, J. E., & Tromba, A. J. (2003). Vector Calculus (5th ed.). W. H. Freeman. Hadley G. (2002): Linear Algebra. Narosa Publishing House (Reprint). Kenneth H. and Kunze R. (1978): Linear Algebra. Phi Learning Pvt Ltd. Mapa S. K. (2016): Higher Algebra: Abstract and Linear. Levant Books. 		
	6. Hadley G. (2002): Linear Algebra. Nat			
	` ′			
	8. Mapa S. K. (2016): Higher Algebra: A			
	 Rao A. R. and Bhimasankaram P. (2000): Linear Algebra. Hindustan Book Agency. Strang, G. (2016): <i>Introduction to Linear Algebra</i> (5th Edition). Wellesley-Cambridge Press. Shakiban, C., & Olver, P. J. (2018): <i>Applied Linear Algebra</i> (2nd Edition). Pearson. 			
Evaluation		30		
	Semester exam: 70 Total: 100			
Paper Structure for	Module-I (35 marks)	Module-II (35 marks)		
Theory Semester	To answer Short: 4 out of 6 (5 marks)	To answer Short: 4 out of 6 (5 marks)		
Exam	Long: 1 out of 2 (15 marks)	Long: 1 out of 2 (15 marks)		