Semester	5
Course	Major
Paper Code	C3CH230512T/ C3CH230512P
Paper Title	Organic Chemistry 4
No. of Credits	4
Theory / Practical /	Composite
Composite	
Minimum No. of	10
preparatory hours per week	
a student has to devote	
Number of Modules	03

UV Spectroscopy: introduction; types of electronic transitions, end absorption; transition dipole moment and allowed/forbidden transitions: chromophores auxochromes; Bathochromic and Hypsochromic shifts; intensity of absorptions (Hyper-/Hypochromic effects); extended conjugated systems (dienes, aldehydes and ketones); relative positions of λmax considering conjugative effect, steric effect, solvent effect, effect of pH; effective chromophore concentration: keto-enol systems; benzenoid transitions.

IR Spectroscopy: introduction; modes of molecular vibrations(fundamental and non-fundamental); IR active molecules; application of Hooke's law, force constant; fingerprint region and its significance; effect of deuteration; overtone bands; vibrational coupling in IR; characteristic and diagnostic stretching frequencies of C-H, N-H, O-H, C-O, C-N, C-X, C=C (including skeletal vibrations of aromatic compounds), C=O. C=N. N=0. C≡C. characteristic/diagnostic bending vibrations are included; factors affecting stretching frequencies: effect electronic effects. conjugation. mass effect, bond multiplicity, ring-size, solvent effect, H-bonding on IR absorptions; application in functional group analysis.

Module II: Rearrangements (12 Lectures)

Mechanism with evidence and stereochemical features for the following Rearrangement to electron-deficient carbon: Wagner-Meerwein rearrangement, pinacol rearrangement, dienone-phenol; Wolff rearrangement in Arndt-Eistert synthesis, benzil-benzilic acid rearrangement, Demjanov Tiffeneau-Demjanov rearrangement, rearrangement. Rearrangement to electron-deficient nitrogen: rearrangements: Hofmann, Curtius, Lossen, Schmidt and Beckmann. Rearrangement to electron-deficient oxygen: Baeyer-Villiger oxidation, cumenehydroperoxide-phenol rearrangement and Dakin reaction. Aromatic rearrangements: Migration from oxygen to ring carbon: Fries rearrangement and Claisen rearrangement. Migration from nitrogen to ring carbon: Hofmann-Martius rearrangement, Fischer-Hepp rearrangement, N-azo to C-azo rearrangement, Bamberger rearrangement, Orton rearrangement and benzidine rearrangement.

Module III: Nitrogen compounds (12 Lectures)

Amines: Aliphatic & Aromatic: preparation, separation (Hinsberg's method) and identification of primary, secondary amines; reaction (with mechanism): tertiary Eschweiler-Clarke methylation, diazo coupling reaction, formation Mannich reaction: and reactions phenylenediamines, diazomethane and diazoacetic ester. Nitro compounds (aliphatic and aromatic): preparation and reaction (with mechanism): reduction under different conditions; Nef carbonyl synthesis, Henry reaction and conjugate addition of nitroalkane anion. Alkylnitrile and isonitrile: preparation and reaction (with mechanism): Thorpe nitrile condensation, von Richter reaction. Diazonium salts and their related compounds: reactions (with mechanism) involving replacement of diazo group; reactions: Gomberg, Meerwein, Japp-Klingermann.

Practical

- a) Synthesis of drugs, industrially important organic compounds
- 1. Synthesis of paracetamol/ibuprofen
- 2. Synthesis of sulfanilamide.
- 3. Synthesis of aspirin.
- 4. Synthesis of tetrahydrocarbazole from phenyl hydrazine and cyclohexanone.
- 5. Synthesis of methyl orange.
- b) Estimation of organic compounds and drugs
- 1. Estimation of aniline/phenol
- 2. Estimation of vitamin-C/paracetamol.
- 3. Estimation of glucose/sucrose
- 4. Estimation of formaldehyde.

Learning Outcomes

Theory:

To have knowledge about

- i) Spectroscopy of organic molecules
- ii) Rearrangement reactions
- iii) Reaction and synthesis of Nitrogen compounds

Practical:

Synthesis of drugs, industrially important organic compounds

Reading/Reference Lists

Theory:

- 1. Clayden, J., Greeves, N., Warren, S. Organic Chemistry, Second edition, Oxford University Press 2012.
- 2. Sykes, P. A guidebook to Mechanism in Organic Chemistry, Pearson Education, 2003.
- 3. Smith, J. G. Organic Chemistry, Tata McGraw-Hill Publishing Company Limited.
- 4. Carey, F. A. &Guiliano, R. M. Organic Chemistry, Eighth edition, McGraw Hill Education, 2012.
- 5. Loudon, G. M. Organic Chemistry, Fourth edition, Oxford University Press, 2008.
- 6. Morrison, R. N. & Boyd, R. N. Organic Chemistry, Dorling Kindersley (India) Pvt. Ltd. (Pearson Education).
- 7. Finar, I. L. Organic Chemistry (Volume 1) Pearson Education.
- 8. Graham Solomons, T.W., Fryhle, C. B. Organic Chemistry, John Wiley & Sons, Inc.
- 9. Kalsi, P. S. Spectroscopy of Organic Compounds, New Age International (P) Limited, 2005.
- 10. Kemp, W. Organic Spectroscopy, Palgrave Macmillan, 1991.
- 11. Norman, R., Principles of Organic Synthesis, Springer, 1993.
- 12. March, J., Advanced Organic Chemistry: Reactions, Mechanisms and Structure, Wiley; 4th edition, 2006.

Practical

- 1. Vogel, A. I. Elementary Practical Organic Chemistry, Part 1: Small scale Preparations, CBS Publishers and Distributors.
- 2. University Hand Book of Undergraduate Chemistry Experiments, edited by Mukherjee, G. N. University of Calcutta, 2003.
- 3. Mann, F.G. & Saunders, B.C. Practical Organic Chemistry, Pearson Education (2009).
- 4. Furniss, B.S., Hannaford, A.J., Smith, P.W.G. & Tatchell, A.R. Practical Organic Chemistry, 5th Ed. Pearson (2012).
- 5. Ahluwalia, V.K. & Aggarwal, R. Comprehensive Practical Organic Chemistry: Preparation and Quantitative Analysis, University Press (2000).
- 6. Practical Workbook Chemistry (Honours), UGBS, Chemistry, University of Calcutta, 2015.

Evaluation Theory: 60 Practical: 40 CA: 38; Attendance:2

	Internal: 15 (CIA: 10; Other form of Assessment: 2;	
	Attendance: 3) Semester	
Danar Structura for	Exam: 45 Answer THREE out of FOUR questions of 15 marks each.	
Paper Structure for Theory Semester Exam	Allswei THREE out of FOUR	questions of 13 marks each.