Semester	5
Course	Major
Paper Code	C3CH230541T
Paper Title	Inorganic Chemistry 5
No. of Credits	4 Theory
Theory / Practical /	Theory
Composite	
Minimum No. of	10
preparatory hours per week	
a student has to devote	
Number of Modules	04
Syllabus	Module I: Bonding in Coordination Complexes-1 (12 Lectures) Concept of Effective Atomic Number (EAN) and EAN rule for stability of complexes; concept of 18electron and 16-electron rules and their applications to organometallic complexes; VBT in simple coordination complexes: examples and major drawbacks;
	Module II: Bonding in Coordination Complexes-2 (12 Lectures) Crystal Field Theory: Splitting of d-orbitals in octahedral, tetrahedral, and square planar complexes; factors affecting the splitting of d-orbitals; spectrochemical series of ligands; concept of CFSE/ LFSE and calculations; concept of highspin, low-spin, and spin state crossover in transition metal complexes;
	Module III: Applications of Crystal Field Theory (12 Lectures)
	Jahn Teller (JT) theorem and its application in coordination complexes; static and dynamic JT-effect with explanations and illustrations; Application of CFT in lattice enthalpy, hydration enthalpy, redox potential, and prediction of spinel/ inverse spinel structure of transition metal and mixed metal oxides.
	Module IV: Molecular Orbital Theory in Coordination Complexes (12 Lectures) Major drawbacks of CFT; Nephelauxetic Effect and Nephelauxetic parameter, MOT for octahedral complexes: construction of LGOs (qualitative) and energy level diagram explanation of – bonding (Ligand to Metal donation and Metal to Ligand donation) by MOT; explanation of spectrochemical series.

Learning Outcomes	Theory:
	1. To understand the basic principles of bonding for
	coordination compounds
	2. To appreciate the principles of Crystal Field Theory
	and Ligand Field Theory
	explaining the chemistry of coordination compounds
	To understand the role of Molecular Orbital Theory and its
Dag ding/Dafanan and Lists	applications to coordination compounds
Reading/Reference Lists	Theory:
	1. Douglas, B.E. and McDaniel, D.H. Concepts & Models
	of Inorganic Chemistry Oxford, 1970. 2. Atkin, P. Shriver
	& Atkins' Inorganic Chemistry, 5th Ed., Oxford University
	Press (2010).
	3. Cotton, F.A., Wilkinson, G. and Gaus, P.L., Basic
	Inorganic Chemistry 3rd Ed.; Wiley India. 4. Sharpe,
	A.G., Inorganic Chemistry, 4th Indian Reprint (Pearson
	Education) 2005.
	1. Huheey, J. E.; Keiter, E.A. & Keiter, R.L. Inorganic
	Chemistry, Principles of Structure and Reactivity 4th Ed.,
	Harper Collins 1993, Pearson, 2006.
	2. Mingos, D.M.P., Essential trends in inorganic
	chemistry. Oxford University Press (1998).
	3. Housecraft, C. E.; Sharpe, A. G., (2018), Inorganic
	Chemistry, 5th Edition, Pearson.
	4. Wulfsberg, G (2002), Inorganic Chemistry, Viva
	Books Private Limited.
	BOOKS I IIVaic Lillilled.
Evaluation	Theory: 100
	Internal: 30 (CIA:20, Other mode of Assesment:5,
	Attendance: 5) Semester Exam:70
Paper Structure for	Answer SEVEN out of NINE questions, of 10 marks each.
Theory Semester Exam	• '