Course	Generic Elective
Semester	
Paper Number	HBTGE1012T & HBTGE1012P
Paper Title	Cellular Biochemistry
No. of Credits	6
Theory/Composite	Composite
No. of periods assigned	4 Theory + 2 Practical
Course	The course aims to
description/objective	1. impart a basic understanding of biomolecules, cell
	biology andgenetics with special emphasis on biological
	organisms.
	2. to impart a fundamental understanding of metabolism and
	variousmacromolecular components of cells and their functions.
	3.give an overview of various perspectives of cell biology.
	4.emphasize on the basic principles of genetics and DNA
	replication.
	5. provide students with an integrated knowledge and
	understanding of dynamics of cell, including the dynamics of membrane-boundorganelles in eukaryotic cells.
	6. provide a basic understanding of microscopy, micrometry,
	cytologyand biochemistry experiments in the practical module.
Syllabus	Theory
	Module A: (25 marks)
	UNIT I: Origin of life: Chemogeny; RNA world; biogeny;
	semiautonomous organelles and endosymbiosis; origin of
	photosynthesis; evolution of eukaryotes.
	UNIT II: Genetics: DNA as carrier of genetic information;
	chromosome theory of inheritance; Mendel's work on
	transmission of traits; Mendelian laws; monohybrid and dihybrid
	cross; deviations from Mendelian laws; gene mutations.
	UNIT III: Replication of DNA: General principles of replication
	(bidirectional, semi conservative and semi discontinuous);
	mechanism(outline); enzymes involved in replication.
	UNIT IV: Genetic code and central dogma: Genetic code
	(salient features); central dogma and reverse transcriptase; types
	of RNA, principles of transcriptional and translational regulation
	No. of Classes: 2 Classes per week
	Module B: (25 marks)
	UNIT V: Introduction to biological macromolecules and
	metabolism: Historical perspectives; functional significance of
	biological macromolecules and their relevance in various human
	diseases; functional significance of biological micronutrients;
	outline of basic metabolic processes.
	UNIT VI: Introduction to basic cell biology and histology:
	Importance of compartmentalization of cells, cell membrane and
	permeability, functional roles of sub-cellular organelles,
	cytoskeleton and extracellular matrix.
	UNIT VII: Introduction to chromosomes: Organization
	of

chromosomal aberrations; significance of cell cycle; basic experimental models in biology. No. of Classes: 2 Classes per week Practicals 1. Preparation of buffer. 2. Determination of pKa values of glycine. 3. Estimation of protein concentration by Modified Lowry method. 4. Estimation of protein concentration by taking absorbance at 280 nm. 5. Microscopy 6. Observation of yeast cells by fungus staining. 7. Determination of bacterial cell size by micrometry.
--

Readings	 Genetics - P.K. Gupta (Rastogi Publications) Cell Biology - C.B. Powar (Himalaya Publishing House) Biochemistry - A.L. Lehninger (Kalyani Publishers) Cytogenetics, Evolution and Plant Breeding - R.S. Shukla, P. Chandel (S. Chand & Co) Harper's Illustrated Biochemistry. R.K. Murray, D.K. Granner, V.W. Rodwell, (29th ed.). Biochemistry- J.M. Berg, J.L. Tymoczko, L. Stryer (7th Ed) Lehninger Principles of Biochemistry. M.M. Cox, D.L. Nelson (5th Ed.) Molecular Biology of the Cell .Bruce Alberts et. al (5th edition) A.J.F. Griffiths, S.R. Wessler, R.C. Lewontin, S.B. Carroll. An Introduction to Genetic Analysis (9th ed.). The Cell - A Molecular Approach - G.M. Cooper, R.E. Hausman Genetics - M.W. Strickberger (3rd ed.)
Evaluation	Theory: Continuous Internal Assessment: 10 marks End- Semester Theory Examination: 50 marks Practical: Continuous Internal Assessment: 10 marks End- Semester Examination: 30 marks
Paper Structure for End Sem Theory	Module A (25 Marks) 5 questions, 1 mark each; i.e. 1x5=5 marks Two questions, 10 marks each, i.e. 10x2=20 marks Module B (25 Marks) 10 questions, 1 mark each; i.e. 1x10=10 marks 3 questions, each 5 marks; i.e. 3x5=15 marks