Course	Discipline Specific Core
Semester	III
Paper Number	MBTCR3072T & MBTCR3072P
Paper Title	CHEMISTRY 1
No. of Credits	6
Theory/Composite	Composite
No. of periods assigned	4 Theory + 3 Practical
Course description/objective	The course aims to
	1. introduce students to basic chemistry.
	2. introduce students to the application of basic chemistry to the
	biological system.
	4. provide knowledge about acid, base and buffer and their
	applications
	5. enable students to understand chemical bonding and its application.
	6. enable students to qualitatively analyze solid organic compounds in
	the practical module.
Syllabus	Theory
	Unit I: Acid-base Concept and Ionic Equilibrium: Arrhenius concept,
	Theory of solvent system, Bronsted and Lowry's concept, Relative
	strength of acids, Lewis concept, HSAB principle. Ionization of water,
	hydrolysis constant degree of hydrolysis and pH for different solts
	Buffer solutions pH of buffer solutions Henderson equation Buffer
	capacity. Buffer solution in biological systems. Common ion effect.
	Solubility and solubility product of sparingly soluble salts – applications
	of solubility product principle.
	Unit II: Stereochemistry: Representation of molecules in Fischer,
	Flying-wedge, Sawhorse and Newman formulae and their
	interconversions. Asymmetry and Dissymmetry, Enatiomerism and
	diastereomerism, Concept of chirality. Elements of symmetry-
	rotational axis of symmetry, plane of symmetry, center of symmetry
	and anerhating axis of symmetery. Optical activity, Specific folation,
	like/unlike chiral centres. Chirotopicity and achirotopicity D/L. R/S
	E/Z, syn/anti, cis/trans, meso/dl, threo/erythro nomenclature.
	Conformational nomenclature- dihedral angle, eclipsed/staggered and
	gauche/anti, energy barrier of rotation. Relative stability of conformers
	on the basis of steric effect, dipole- dipole interactions, H-bonding.
	Conformational analysis of ethane, propane, n-butane, 2-methylbutane.
	Unit III: Chemical Bonding I: Introduction to chemical bonding, Types
	of chemical bonds. Ionic bonding– General characteristics of ionic
	bonding, lattice energy and solvation energy and their importance in the
	context of stability and solubility of fonic compounds. Born-Lande
	Solvation energy Polarizing power and polarizability Ionic potential
	Fajan's rules. Ionic character in covalent compounds. Covalent
	bonding- Valence Bond theory (VBT), Hybridization involving s, p and
	d orbitals, Equivalent and nonequivalent hybrid orbitals, Bent's rule.
	Valence Shell Electron Pair Repulsion (VSEPR) Theory, Shapes of
	molecules, Bond moment and dipole moment. Hydrogen bonding and
	van der Waals forces. Molecular Orbital approach- Rules for the LCAO
	method, bonding and antibonding MOs and their characteristics for s-

	s, s-p and p-p combinations of atomic orbitals, bond order, MO
	diagrams of some homonuclear diatomic molecules of 1st period.
	Co-ordinate bonding and co-ordination compounds- Lewis acid base
	adducts, Double salts and complex salts. Warner theory of
	coordination, Ligand and its classifications, Co-ordination number.
	Chelate complexes, Inner metallic complexes, Chelate effect,
	Applications of co-ordination compounds (analytical application,
	industrial application, chelation therapy). IUPAC nomenclature (up to
	two metal centres) Structural and stereoisomerism in respect of
	coordination number 4 and 6 Determination of configurations of cis
	and transisomers by chemical methods Stability constants of
	coordination complexes
	coordination complexes.
	No. of Classes: 4 Classes / week
	Practical Qualitative analysis of Single Solid Organic Compound:
	(i) Detection of special elements (N, Cl. Br. I and S).
	(ii) Detection of the following functional groups by systematic
	chemical tests: Amine (-NH2) Nitro (-NO2) Amide (-CONH2)
	Anilide (-CONHAr) Phenolic hydroxyl (-OH) Carboxylic acid (-
	COOH) Carbonyl ($>C=O$)
Readings	Theory:
	1. R. P. Sarkar, General and Inorganic Chemistry (Part-I), New
	Central Book Agency (P) Limited, 3rd Revised edition, 2011.
	2. S. Sengupta, Basic Stereochemistry of Organic Molecules, Oxford
	University Press, First edition, 2014.
	3. E. L. Eliel, Stereochemistry of Carbon Compounds, Tata McGraw
	Hill education, 2000.
	4. J. D. Lee, Concise Inorganic Chemistry, ELBS, 1991.
	Practical
	A K Nad B Mahanatra and A Ghosal An Advanced Course in
	Practical Chemistry New Central Book Agency (P) Limited 2014
	r rachear Chemistry, New Central Book Argeney (1) Emitted, 2014.
Evaluation	Theory: Continuous Internal Assessment: 10 marks
Evaluation	End-Semester Theory Examination: 50 marks
	Practical:
	Continuous Internal Assessment: 32 marks
	End-Semester Examination: 8 marks
	Section A: Compulsory Objective questions: 1×6 – 6 marks Section B:
Paper structure for End Sem	Any one from two subjective questions with subparts: $12 \times 1 = 12$ marks
	Section C: Any one from two subjective questions with subparts: $12\times 1 = 12$ matrix:
	12 marks
	Section D: Any two from three subjective questions with subparts: 10×2
	= 20 marks.
	(No subpart will be less than 1 mark or more than 5 marks)