Course	Discipline Specific Core
Semester	VI
Paper Number	MBTCR6132T & MBTCR6132P
Paper Title	BIO ANALYTICAL TOOLS
No. of Credits	6
Theory/Composite	Composite
No. of periods assigned	4 Theory + 3 Practical
Course description/objective	The course aims to
	provide an overview of various technical methods and bio-analytical
	tools which have useful applications in biotechnology.
	introduce students to microscopy, centrifugation and cell
	fractionation techniques.
	3. introduce students to electrophoresis and its applications.
	4. enable students understand the principles of chromatography.
	5. introduce students to the principles of spectroscopy.
	provide students with a hands-on-experience of several bio-
Callabase	analytical techniques in the practical module.
Syllabus	Theory Module A: (20 marks)
	UNIT I: Simple microscopy, phase contrast microscopy, fluorescence
	microscopy. Centrifugation, cell fractionation techniques, isolation of
	sub-cellular organelles and particles.
	UNIT II: Introduction to polyacrylamide gel electrophoresis (native
	and SDS-PAGE), pulse field gel electrophoresis, immuno-
	electrophoresis, isoelectric focusing, Western blotting and
	immunoprecipitation to study protein-protein and protein-nucleic acid
	interaction.
	No. of Classes: 1.5 / week
	Module B: (30 marks)
	UNIT III: pH meter, absorption and emission spectroscopy, Principle
	and law of absorption, spectrophotometry (visible, UV, infrared),
	colorimetry, fluorimetry, Concept of NMR and CD (outline only).
	UNIT IV: Introduction to the principle of chromatography. paper
	chromatography, thin layer chromatography, column chromatography:
	silica and gel filtration, affinity and ion exchange chromatography, gas
	chromatography, HPLC.
	No. of Classes: 2.5 / week
	Practical
	1 Proporation of buffors
	 Preparation of buffers. Determination of buffering capacity of amino acids
	3. Estimation of protein concentration by taking absorbance at 280
	nm
	4. Estimation of protein concentration by Modified Lowry Method
	5. SDS-polyacrylamide slab gel electrophoresis of proteins under
	reducing conditions
	6. Native gel electrophoresis of proteins
	7. Monitoring protein aggregation using turbidity measurements and
	gel electrophoresis

	8. Selective salting out of proteins using ammonium sulfate precipitation 9. Separation of amino acids by paper chromatography. 10. To identify amino acids in a given sample by TLC.
Readings	 P. S. Kalsi, Spectroscopy of Organic Compounds, New Age International, 2007. C. N. Banwell, & E. M. McCash, Fundamentals of Molecular Spectroscopy, Tata McGraw-Hill: New Delhi, 4th edition, 2006. Lehninger Principles of Biochemistry - Cox & Nelson. Biochemistry Berg – Tymoczko & Stryer.
Evaluation	Theory: Continuous Internal Assessment: 10 marks End-Semester Theory Examination: 50 marks Practical: Continuous Internal Assessment: 32 marks End-Semester Examination: 8 marks
Paper Structure for End Sem Theory	Module A (20 Marks) Compulsory Objective questions: $1x6 = 6$ marks Subjective two questions 10 marks each: $2x7 = 14$ marks Module B (30 Marks) Compulsory Objective questions: $1\times 6 = 6$ marks Any two from three subjective questions with subparts: $12\times 2 = 24$ marks (No subpart will be less than 1 mark or more than 5 marks)