Course: M.Sc (Physics)

Semester	2
Paper Number	7 (MPHC4203)
Paper Title	Statistical Mechanics II and Relativity \& Relativistic Electrodynamics
No. of Credits	6
	Group A: The course objective of Statistical Mechanics II includes understanding the concept of the density matrix, which is used to describe the statistical behaviour of quantum particles, and its relation to the thermodynamic properties of the system. Other important concepts include the partition function, quantum ensembles, and thermodynamic potentials. Additionally, students of quantum statistical mechanics are
expected to be able to apply these concepts to solve problems in areas Condensed matter Physics, Astro Physics etc. They should also be able to understand the various approximations and models used in quantum statistical mechanics, such as the ideal Bose and Fermi gases, and their limitations. Students will be able to understand the concept of interacting systems and apply to study 1-d Ising model.	
description/objective	Group B: Group
The course objectives of Relativity \& Relativistic Electrodynamics include the understanding of the Lorentz transformation equations and their applications like length contraction, time dilation, simultaneity etc. Students must learn the	
transformation equations for velocity, acceleration etc. Lorentz invariance of various	
expressions and the geometrical representation of space-time should be thoroughly studied. Students must learn the four-vector formalism and its various applications.	
Theyshould have a clear idea of tensor calculus and its usefulness as an important tooi	
Th special relativity. Students must study the relativistic analysis of classical	
in	
electrodynamics. They should learn the covariance of Maxwell's equations, Lorentz	
force law etc., represented in terms of the electromagnetic field tensors. They must	
know the rules of transformation for electro-magnetic field components from one	
frame to another.	

	application. Electromagnetic field invariants. Transformation laws for the components of electric field and magnetic field. Fields due to a point charge in uniform motion. Electric \& magnetic fields produced by an accelerated charge. [16 lectures]
	 Group A: 1. K. Huang, Introduction to Statistical Mechanics 2. R. K. Pathria, Statistical Mechanics 3. David Chandler, Introduction to Modern Statistical Mechanics 4. Kadanoff, Statistical Mechanics. World Scientific. 5. R. Kubo, Statistical Mechanics. (Collection of problems) 6. M. Plischke and B. Bergersen, Equilibrium Statistical Physics, World-Scientific. Group B: 1. Relativity, Gravitation and Cosmology by, Robert J. A. Lambourne (Cambridge University Press, 2010). 2. The Special Theory of Relativity by Dennis Morris (Mercury Learning and Information) 3. Classical Theory of Fields by Landau and Lifshitz (Butterworth-Heinemann; 4th edition, 1987) 4. Introduction to Electrodynamics by, D J Griffiths (Prentice Hall, 1999.) 5. The Special Theory of Relativity by Banerji \& Banerjee (Prentice Hall of India, 2006) 6. Electricity and Magnetism by, Nayfeh \& Brussel (John Wiley \& Sons, 1985) 7. Classical Electrodynamics by J D Jackson (John Wiley, 2007) 8. Classical Electricity and Magnetism by Panofsky \& Phillips (Dover Publications, 2005) Total: 100 CIA: 10 (Group A) + 10 (Group B) End Semester Examination: 40 (Group A) + 40 (Group B) Evaluation

