SEMESTER	1
Paper Number	MCMS 4104
Paper Title	Advanced Computer Architecture
No. of credits	6
Theory / Composite	Theory
No. of periods assigned	Th: 5 Tut: 1
Name of faculty member(s)	
Course description / objectives	On completion of this course, the students will be able to:
	1. appreciate the need for parallelism at hardware level
	2. understand the application area of different parallel architectures such
	as SIMD and MIMD.
	3. understand implicit and explicit parallel platform
	4. learn to decompose into sub problems and execute them in a pipelined
	fashion.
	5. use performance metrics for analysis of parallel algorithms
	6. develop parallel algorithms for various parallel systems
Syllabus	Introduction: Elements of Modern Computers, Performance, The
	Switch from Uniprocessors to Multiprocessors
	Parallel Processing: Parallel Computer Structures, Architectural
	Classification, Parallel Processing Applications
	Principles of Pipelining and Vector Processing: Pipelining, Instruction
	and Arithmetic Pipelines, Principles of designing pipelined processors,
	Structures and Alexisters of American Disasters (SDAD Commuters)
	SIMD Array Processors (SIMD Computers):
	Algorithms for Array Processors
	Algorithms for Allay Flocessors
	Interconnection Networks Multistage Interconnection Networks
	Parallel Memory Organizations
	Memory and I/O sub-systems: Hierarchical Memory Structures, Cache
	Memories and Management I/O sub-systems
Reading/Reference Lists	1 Kai Hwang Advanced Computer Architecture Tata Mc Graw Hills
	2. Kai Hwang and F. A. Briggs. Computer Architecture and Parallel
	Processing. Tata Mc Graw Hills
	3. Hennessy Patterson, Computer Architecture, A quantitative
	Approach . 5th ed. Elsevier.
	4. Dongarra, Foster, Fox & others, Source Book of parallel Computing,
	Elsevier.
	5. M.J Quinn, Designing Efficient Algorithms for Parallel Computers,
	Mc Graw Hill
Evaluation	Total – 100
	CIA – 20 Semester Examination – 80