SEMESTER	4
Paper Number	MCMS 4413
Paper Title	Machine Learning and Data Mining
No. of credits	6
Theory / Composite	Composite
No. of periods assigned	Th: 4 Pr: 4
Name of faculty member(s)	
Course description / objectives	On the completion of this course, the students will be able to:
	1. have a good understanding of the usefulness and applications of
	different data mining strategies
	2. recognize the fundamental concepts and issues of machine learning
	3. appreciate the relation between data mining and machine learning
	3. realize the underlying mathematics in the development of different
	data mining and machine learning strategies
	4. compare and analyse popular machine learning algorithms including
	supervised and unsupervised learnings
	5. apply different data mining and machine learning algorithms to tackle
0.11.1	different real-world problems
Syllabus	Theory – 60 marks
	Introduction to Data Mining, Architecture of a Data Mining System.
	KDD Vs Data Mining: Applications of Data Mining System;
	Data Preprocessing: Overview: Data cleaning: Data Integration: Data
	Reduction
	Mining Frequent Patterns and Association: Frequent itemsets Closed
	itemsets. Association rules: Apriori algorithm, Hash based technique.
	Introduction to Machine Learning: Definitions, types of learning.
	hypothesis space and inductive bias, evaluation, cross-validation
	Regression: Linear regression; Logistic regression; Polynomial
	regression; Applications.
	Classification: Supervised learning; Support Vector Machine, Decision
	Tree, Random Forest, Naive Bayes classifier; Rule based classification,
	Model evaluation and selection, Confusion matrix, Accuracy, Recall,
	Precision, F1 score, ROC, AUC.
	Clustering: Unsupervised learning, Partitioning methods; Hierarchical
	methods; Density based methods.
	Neural Network: Introduction and Features, Least Mean Square
	algorithm, Perceptron, Backpropagation, Multilayer network,
	Introduction to Deep Learning.
	Lob 40 montrs
Reading/Reference Lists	1 "Data Mining: Concepts and techniques" I Han and M Kamber
Reading/Reference Lists	Third Edition Elsivier
	2 "The Top Tep algorithms in Data Mining" CRC Press
	3. Ethem Alpavdin, "Introduction to Machine Learning" 2nd Edition.
	The MIT Press, 2009.
	4. Tom M. Mitchell, "Machine Learning", First Edition by Tata
	McGraw-Hill Education, 2013.
Evaluation	Total -100 (Theory -60 , Practical -40)
	Theory CIA 10 Semister Examination 50